Marilina Codagnone

  • Citations Per Year
Learn More
Regulatory mechanisms of ALX/FPR2, the lipoxin A4 receptor, expression have considerable relevance in inflammation resolution. Because microRNAs (miRs) are emerging as key players in inflammation resolution, here we examined microRNA-mediated regulation of ALX/FPR2 (lipoxin A4 receptor/formyl peptide receptor 2) expression. By matching data from(More)
Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or(More)
Resolvin D1 (RvD1; 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) is an endogenous immunoresolvent that regulates acute inflammation and orchestrates resolution. Here, we investigated anti-inflammatory and proresolving actions of RvD1 after oral administration. RvD1 rapidly accumulated in the mouse plasma after oral delivery and(More)
Pseudomonas aeruginosa lung infection is a main cause of disability and mortality worldwide. Acute inflammation and its timely resolution are crucial for ensuring bacterial clearance and limiting tissue damage. Here, we investigated protective actions of resolvin (Rv) D1 in lung infection induced by the RP73 clinical strain of P. aeruginosa. RvD1(More)
Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we(More)
The proresolution lipid mediator lipoxin (LX)A4 bestows protective bioactions on endothelial cells. We examined the impact of LXA4 on transcellular endothelial signaling via microRNA (miR)-containing microvesicles. We report LXA4 inhibition of MV release by TNF-α-treated HUVECs, associated with the down-regulation of 18 miR in endothelial microvesicles(More)
The involvement of microRNA (miR) in cystic fibrosis (CF) pathobiology is rapidly emerging. We previously documented that miR-181b controls the expression of the ALX/FPR2 receptor, which is recognized by the endogenous proresolution ligand, lipoxin (LX)A4. Here, we examined whether the miR-181b-ALX/FPR2 circuit was altered in CF. We examined human airways(More)
  • 1