Marilia T. C. Martins-Costa

  • Citations Per Year
Learn More
Aerosols and clouds play important roles in atmospheric chemistry, but molecular details of the process are not yet completely understood, despite many investigations carried out in the last few years. On one hand, the uptake of a compound into an aerosol or a water droplet modifies its gas-phase concentration and chemical kinetics. On the other hand, the(More)
Knowledge of the role of water droplets and aerosols in atmospheric chemistry is crucial to significantly improve our understanding of global warming and air quality. Chemistry at the air/water interface, in particular, is still poorly understood. There is a great need to understand how clouds and aerosols process chemistry of organics prevalent in the(More)
Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the(More)
The role of the HO(4)(-) anion in atmospheric chemistry and biology is a matter of debate, because it can be formed from, or be in equilibrium with, key species such as O(3) + HO(-) or HO(2) + O(2) (-). The determination of the stability of HO(4)(-) in water therefore has the greatest relevance for better understanding the mechanism associated with(More)
We describe an efficient and accurate method to compute free energy changes in complex chemical systems that cannot be described through classical molecular dynamics simulations, examples of which are chemical and photochemical reactions in solution, enzymes, interfaces, etc. It is based on the use of dual-level Born-Oppenheimer molecular dynamics(More)
Mixed alkyllithium/lithium alkoxides aggregates are important species in synthetic organic chemistry, but their electronic and geometric properties have not been extensively studied yet. The main objective of this work was to analyze the structure of simple prototypical aggregates in a coordinating solvent with the help of elaborated theoretical chemistry(More)
First-principles simulations suggest that additional OH formation in the troposphere can result from ozone interactions with the surface of cloud droplets. Ozone exhibits an affinity for the air-water interface, which modifies its UV and visible light spectroscopic signatures and photolytic rate constant in the troposphere. Ozone cross sections on the red(More)
The atmospheric oxidation of methyl hydroperoxide by the hydroxyl radical has been investigated employing high level theoretical methods. This reaction is important in the chemistry of the troposphere because these species contribute to the oxidizing capacity of the atmosphere and therefore we have studied the bare reaction and the effect of the relative(More)