Mariko Hatakeyama

Learn More
Deregulation of ErbB signaling plays a key role in the progression of multiple human cancers. To help understand ErbB signaling quantitatively, in this work we combine traditional experiments with computational modeling, building a model that describes how stimulation of all four ErbB receptors with epidermal growth factor (EGF) and heregulin (HRG) leads to(More)
ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3'-kinase (PI3K)-Akt pathway negatively regulated the extracellular(More)
In this paper, we propose a new method for the inference of S-system models of large-scale genetic networks from the observed time-series data of gene expression patterns. The proposed method employs a technique to decompose the genetic network inference problem into several subproblems. The S-system parameters are estimated by solving these decomposed(More)
Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their(More)
ErbB receptor ligands, epidermal growth factor (EGF) and heregulin (HRG), induce dose-dependent transient and sustained intracellular signaling, proliferation, and differentiation of MCF-7 breast cancer cells, respectively. In an effort to delineate the ligand-specific cell determination mechanism, we investigated time course gene expressions induced by EGF(More)
Cellular transformation occurs only in cells that express both ErbB1 and ErbB4 receptors, but not in cells expressing only one or the other of these receptors. However, when both receptors are coexpressed and ligand-stimulated, they interact with virtually the same adaptor/effector proteins as when expressed singly. To reveal the underlying regulatory(More)
We studied the interactions between the SH2 domain of growth factor receptor binding protein 2 (Grb2) and ErbB receptor-derived phosphotyrosyl peptides using molecular dynamics, free energy calculations, and surface plasmon resonance (SPR) analysis. Binding free energies for nine phosphotyrosyl peptides were calculated using the MM-PBSA continuum solvent(More)
Ligand-activated and tyrosine-phosphorylated ErbB3 receptor binds to the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase and initiates intracellular signaling. Here, we studied the interactions between the N- (N-SH2) and C- (C-SH2) terminal SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase and eight ErbB3 receptor-derived(More)
Controlled activation of epidermal growth factor receptor (EGFR) is systematically guaranteed at the molecular level; however, aberrant activation of EGFR is frequently found in cancer. Transcription induced by EGFR activation often involves the coordinated expression of genes that positively and negatively regulate the original signaling pathway;(More)
Activated receptor tyrosine kinases bind the Shc adaptor protein through its N-terminal phosphotyrosine-binding (PTB) and C-terminal Src homology 2 (SH2) domains. After binding, Shc is phosphorylated within the central collagen-homology (CH) linker region on Tyr-317, a residue remote to both the PTB and SH2 domains. Shc phosphorylation plays a pivotal role(More)