Marijn van Stralen

Learn More
Three-dimensional (3-D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction. It involves evaluating wall motion of the left ventricle, by visually analyzing ultrasound images obtained in rest and in different stages of stress. Since the acquisitions are performed minutes apart, variabilities may exist in the visualized(More)
BACKGROUND Transtemporal approaches require surgeons to drill the temporal bone to expose target lesions while avoiding the critical structures within it, such as the facial nerve and other neurovascular structures. We envision a novel protective neuronavigation system that continuously calculates the drill tip-to-facial nerve distance intraoperatively and(More)
The analysis of echocardiograms, whether visual or automated, is often hampered by ultrasound artifacts which obscure the moving myocardial wall. In this study, a probabilistic framework for tracking the endocardial surface in 3D ultrasound images is proposed, which distinguishes between visible and artifact-obscured myocardium. Motion estimation of visible(More)
This paper presents a novel model based segmentation technique for quantification of left ventricular (LV) function from sparse single-beat 3D echocardiographic data acquired with a fast rotating ultrasound (FRU) transducer. This transducer captures cardiac anatomy in a sparse set of radially sampled, curved cross-sections within a single cardiac cycle. The(More)
Multiresolution strategies are commonly used in the nonrigid registration to avoid local minima in the optimization space. Generally, a step-by-step hierarchical approach is adopted, in which the registration starts on a level with reduced complexity (downsampled images, global transformations), then continuing to levels with increased complexity, until the(More)
PURPOSE To report the first clinical experience with targeted vessel ablation during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic uterine fibroids. METHODS Pretreatment T1-weighted contrast-enhanced magnetic resonance angiography was used to create a detailed map of the uterine arteries and feeding(More)