Learn More
Glucocorticoids (GCs) secreted after stress reduce adult hippocampal neurogenesis, a process that has been implicated in cognitive aspects of psychopathology, amongst others. Yet, the exact role of the GC receptor (GR), a key mediator of GC action, in regulating adult neurogenesis is largely unknown. Here, we show that GR knockdown, selectively in newborn(More)
Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system, with lesions widespread through the brain and spinal cord. An important manifestation is cognitive impairment, which, though difficult to measure, may have a major social impact. To better understand the relationship between structural tissue damage and cognitive(More)
Early life is a period of unique sensitivity during which experience can confer enduring effects on brain structure and function. During early perinatal life the quality of the surrounding environment and experiences, in particular the parent-child relationship, is associated with emotional and cognitive development later in life. For instance, adverse(More)
In the brain, the connection between sensory information triggered by the presence of a stressor and the organism's reaction involves limbic areas such as the hippocampus, amygdala and prefrontal cortex. Consequently, these brain regions are the most sensitive to stress-induced changes in neuronal plasticity. However, the specific effects of stress on(More)
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex(More)
Adult neurogenesis generates functional neurons from neural stem cells present in specific brain regions. It is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus (DG), in the hippocampus. With age, the function of the hippocampus and particularly the DG is impaired. For(More)
Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial(More)
The aim of this study was to assess if the pain observation scale for young children (POCIS) and the visual analogue scale (VAS) are reliable and valid instruments to measure procedural and background pain in burned children aged 0-4 years. Burn care nurses (n=73) rated pain from 24 fragments of videotaped children during wound care procedures and during(More)
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an(More)
Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes(More)