Learn More
Traditional convolutional neural networks (CNN) are stationary and feedforward. They neither change their parameters during evaluation nor use feedback from higher to lower layers. Real brains, however, do. So does our Deep Attention Selective Network (dasNet) architecture. DasNet's feedback structure can dynamically alter its convolutional filter(More)
Convolutional Neural Networks (CNNs) can be shifted across 2D images or 3D videos to segment them. They have a fixed input size and typically perceive only small local contexts of the pixels to be classified as foreground or background. In contrast, Multi-Dimensional Recurrent NNs (MD-RNNs) can perceive the entire spatio-temporal context of each pixel in a(More)
To autonomously learn behaviors in complex environments, vision-based agents need to develop useful sensory abstractions from high-dimensional video. We propose a modular, curiosity-driven learning system that autonomously learns multiple abstract representations. The policy to build the library of abstractions is adapted through reinforcement learning, and(More)
Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in(More)
To produce even the simplest human-like behaviors, a humanoid robot must be able to see, act, and react, within a tightly integrated behavioral control system. Although there exists a rich body of literature in Computer Vision, Path Planning, and Feedback Control, wherein many critical subproblems are addressed individually , most demonstrable behaviors for(More)
To plan complex motions of robots with many degrees of freedom, our novel, very flexible framework builds task-relevant roadmaps (TRMs), using a new sampling-based optimizer called Natural Gradient Inverse Kinematics (NGIK) based on natural evolution strategies (NES). To build TRMs, NGIK iteratively optimizes postures covering task-spaces expressed by(More)
Pure scientists do not only invent new methods to solve given problems. They also invent new problems. The recent POWERPLAY framework formalizes this type of curiosity and creativity in a new, general, yet practical way. To acquire problem solving prowess through playing, POWERPLAY-based artificial explorers by design continually come up with the fastest to(More)
How can a humanoid robot autonomously learn and refine multiple sensorimotor skills as a byproduct of curiosity driven exploration, upon its high-dimensional unprocessed visual input? We present SKILLABILITY, which makes this possible. It combines the recently introduced Curiosity Driven Modular Incremental Slow Feature Analysis (Curious Dr. MISFA) with the(More)
Consider a self-motivated artificial agent who is exploring a complex environment. Part of the complexity is due to the raw high-dimensional sensory input streams, which the agent needs to make sense of. Such inputs can be compactly encoded through a variety of means; one of these is slow feature analysis (SFA). Slow features encode spatiotemporal(More)