Marijke A. H. Luttik

Learn More
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At(More)
The kinetics of glucose transport and the transcription of all 20 members of the HXT hexose transporter gene family were studied in relation to the steady state in situ carbon metabolism of Saccharomyces cerevisiae CEN.PK113-7D grown in chemostat cultures. Cells were cultivated at a dilution rate of 0.10 h-1 under various nutrient-limited conditions(More)
A quantitative analysis of the impact of feedback inhibition on aromatic amino acid biosynthesis was performed in chemostat cultures of Saccharomyces cerevisiae. Introduction of a tyrosine-insensitive allele of ARO4 (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) caused a three-fold increase of intracellular phenylalanine and tyrosine(More)
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose(More)
NDI1 is the unique gene encoding the internal mitochondrial NADH dehydrogenase of Saccharomyces cerevisiae. The enzyme catalyzes the transfer of electrons from intramitochondrial NADH to ubiquinone. Surprisingly, NDI1 is not essential for respiratory growth. Here we demonstrate that this is due to in vivo activity of an ethanol-acetaldehyde redox shuttle,(More)
Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were(More)
Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK113-7D were grown with different nitrogen sources. Cultures grown with phenylalanine, leucine, or methionine as a nitrogen source contained high levels of the corresponding fusel alcohols and organic acids, indicating activity of the Ehrlich pathway. Also, fusel alcohols derived(More)
In Saccharomyces cerevisiae, the NDI1 gene encodes a mitochondrial NADH dehydrogenase, the catalytic side of which projects to the matrix side of the inner mitochondrial membrane. In addition to this NADH dehydrogenase, S. cerevisiae exhibits another mitochondrial NADH-dehydrogenase activity, which oxidizes NADH at the cytosolic side of the inner membrane.(More)
Kluyveromyces lactis is an important industrial yeast, as well as a popular laboratory model. There is currently no consensus in the literature on the physiology of this yeast, in particular with respect to aerobic alcoholic fermentation ('Crabtree effect'). This study deals with regulation of alcoholic fermentation in K. lactis CBS 2359, a proposed(More)
Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine(More)