Marielle Nebout

Learn More
BACKGROUND Fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, many of these xenoestrogens have only a weak affinity for the classical estrogen receptors (ERs,) which is 1,000-fold less potent than the affinity of 17beta-estradiol (E(2)). Thus, several mechanisms have been suggested to(More)
Macroautophagy (hereafter referred to as autophagy) has emerged as a key tumor suppressor pathway. During this process, the cytosolic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes to become autolysosomes where their contents are finally degraded. Although a reduced autophagy has been shown in human tumors or in(More)
It is now well established that estrogens participate in the control of normal spermatogenesis and endogenous or environmental estrogens are involved in pathological germ cell proliferation including testicular germ cell tumors. Studying a human testicular seminoma cell line, JKT-1, we show here that 17beta-estradiol (10(-12) to 10(-6) M) induced in vitro a(More)
Clinical and experimental studies have suggested that estrogens, the archetype of female hormones, participate in the control of male germ cell proliferation and that fetal exposure to environmental estrogens may contribute to hypofertility and/or to testicular germ cell cancer. However, the underlying mechanisms remain to be elucidated. 17beta-Estradiol(More)
Although worldwide concerns have emerged about environmental factors that display carcinogenic and reprotoxic effects, little is known about the mechanism(s) by which these chemicals alter testicular function. Using the 42GPA9 Sertoli cell line, we recently reported that one widely used lipid-soluble pesticide, Lindane impairs gap junctional intercellular(More)
Testicular germ cell tumours (TGCTs), the most frequent solid tumour of the young men, originate from the primitive germ cells. They share some pluripotency stem-cell markers which may help to distinguish between seminoma, the most frequent TGCTs and non-seminoma tumours, such as embryonal carcinoma, teratocarcinoma or choriocarcinoma. Due probably to the(More)
There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli(More)
Here we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture,(More)
Gap junctional intercellular communication is involved in the control of cell proliferation and differentiation. Connexin33, a member of the multi-gene family of gap junction proteins, exerts an inhibitory effect on intercellular communication when injected into Xenopus oocytes. However, the molecular mechanisms involved remain to be elucidated. Our results(More)
The altered metabolism of cancer cells is a treasure trove to discover new antitumoral strategies. The gene (SLC7A5) encoding system L amino-acid transporter 1 (LAT1) is overexpressed in murine lymphoma cells generated via T-cell deletion of the pten tumor suppressor, and also in human T-cell acute lymphoblastic leukemia (T-ALL)/lymphoma (T-LL) cells. We(More)