Learn More
From a mid-maturation seed cDNA library we have isolated cDNA clones encoding two Triticum aestivum puroindolines. Puroindoline-a and puroindoline-b, which are 55% similar, are basic, cystine-rich and tryptophan-rich proteins. Puroindolines are synthezised as preproproteins which include N- and C-terminal propeptides which could be involved in their(More)
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing(More)
Plant non-specific lipid transfer proteins (nsLTPs) are encoded by multigene families and possess physiological functions that remain unclear. Our objective was to characterize the complete nsLtp gene family in rice and arabidopsis and to perform wheat EST database mining for nsLtp gene discovery. In this study, we carried out a genome-wide analysis of(More)
A genomic DNA fragment containing the 5′-upstream sequence and part of the open reading frame corresponding to Triticum aestivum puroindoline-b cDNA, was isolated by inverse PCR. Promoter fragments extending to −1068, −388, −210 or −124 upstream of the translation initiation ATG codon and the sequence coding for the first 13 amino acids of the(More)
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing(More)
Gene expression profiles of group 2 (dehydrins) and group 4 Late embryogenesis abundant (Lea) genes in developing seeds of Triticum durum and T. aestivum and in coleoptiles and coleorhizae of T. durum seedlings were monitored by real-time quantitative RT-PCR. The five genes exhibited clear differences in their accumulation pattern in wheat seed and in(More)
Nine cDNA clones encoding non-specific lipid transfer proteins (nsLTPs) were isolated from Triticum aestivum and Triticum durum cDNA libraries and characterized. One cDNA is predicted to encode a type 2 nsLTP (7 kDa) while others encode type 1 nsLTPs (9 kDa). All encoded proteins contain an N-terminal signal sequence and possess the characteristic features(More)
Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions, which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled isolation of 22 novel Triticum aestivum nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree(More)
In plants, a family of ubiquitous proteins named non-specific lipid-transfer proteins (ns-LTPs) facilitates the transfer of fatty acids, phospholipids and steroids between membranes. Recent data suggest that these secreted proteins play a key role in the formation of cuticular wax layers and in defence mechanisms against pathogens. In this study, X-ray(More)
The refined structure of a wheat type 2 nonspecific lipid transfer protein (ns-LTP2) liganded with l-alpha-palmitoylphosphatidylglycerol has been determined by NMR. The (15)N-labeled protein was produced in Pichia pastoris. Physicochemical conditions and ligandation were intensively screened to obtain the best NMR spectra quality. This ns-LTP2 is a(More)