Learn More
A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering(More)
With their characteristics of low density and elastic moduli, polymers are promising materials for making ultrasonic motors (USMs) with high energy density. Although it has been believed for a long time that polymers are too lossy to be applied to high-amplitude vibrators, there are several new polymers that exhibit excellent vibration characteristics.(More)
  • 1