Marie Skepö

  • Citations Per Year
Learn More
An increasing number of studies using molecular dynamics (MD) simulations of unfolded and intrinsically disordered proteins (IDPs) suggest that current force fields sample conformations that are overly collapsed. Here, we study the applicability of several state-of-the-art MD force fields, of the AMBER and GROMOS variety, for the simulation of Histatin 5, a(More)
In this Monte Carlo simulation study we use mesoscopic modeling to show that β-casein, an unstructured milk protein, adsorbs to surfaces not only due to direct electrostatic and hydrophobic interactions but also due to structural rearrangement and charge regulation due to proton uptake and release. β-casein acts as an amphiphilic chameleon, changing(More)
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some(More)
Monte Carlo simulations and coarse-grained modeling have been used to analyze Histatin 5, an unstructured short cationic salivary peptide known to have anticandidical properties. The calculated scattering functions have been compared with intensity curves and the distance distribution function P(r) obtained from small angle X-ray scattering (SAXS), at both(More)
Histidine-rich, unstructured peptides adsorb to charged interfaces such as mineral surfaces and microbial cell membranes. At a molecular level, we investigate the adsorption mechanism as a function of pH, salt, and multivalent ions showing that (1) proton charge fluctuations are-in contrast to the majority of proteins-optimal at neutral pH, promoting(More)
Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence to serum-coated catheters was four times greater than to uncoated(More)
  • M Skepö
  • The Journal of chemical physics
  • 2008
The structural properties of the salivary protein statherin upon adsorption have been examined using a coarse-grained model and Monte Carlo simulation. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. To mimic hydrophobically modified surfaces, an extra short-ranged(More)
HYPOTHESIS The adsorption of histatin 5 to hydrophilic silica surfaces is governed by electrostatic attractive forces between the positive protein and the negative surface. Hence pH and ionic strength control the adsorbed amount, which can be described by coarse-grained Monte Carlo simulations accounting for electrostatic forces and charge regulation of the(More)
HYPOTHESIS The adsorbed amount of the polyelectrolyte-like protein histatin 5 on a silica surface depends on the pH and the ionic strength of the solution. Interestingly, an increase in ionic strength affects the adsorbed amount differently depending on the pH of the solution, as shown by ellipsometry measurements (Hyltegren, 2016). We have tested the(More)
The hydrophobic interaction between two methane molecules in salt-free and high salt-containing aqueous solutions and the structure in such solutions have been investigated using an atomistic model solved by Monte Carlo simulations. Monovalent salt representing NaCl and divalent salt with the same nonelectrostatic properties as the monovalent salt have been(More)