Marie Pourcelot

Learn More
Mitochondria are dynamic organelles with a morphology resulting from the balance between two opposing processes: fusion and fission. Little is known about the function of mitochondrial fusion, beside its role in the maintenance of mitochondrial DNA. We report here that enforced mitochondrial hyperfusion, due to the expression of a dominant-negative mutant(More)
The nuclear factor κB (NF-κB) family members regulate several biological processes as cell proliferation and differentiation, inflammation, immunity and tumor progression. Ubiquitination plays a key role in NF-κB activation and the ubiquitylated transmitters of the NF-κB signaling cascade accumulate in close proximity to endomembranes. We performed an(More)
The innate immune system has a key role in the mammalian immune response. In the cytosol, RNA viruses are sensed by the retinoic acid-inducible gene-I-like receptors, which trigger a complex signaling cascade in which mitochondrial antiviral signaling protein plays a central role in mediating the innate host response through the induction of antiviral and(More)
Pathogen-associated molecular pattern (PAMP) recognition leads to TANK-binding kinase (TBK1) polyubiquitination and activation by transautophosphorylation, resulting in IFN-β production. Here, we describe a mouse model of optineurin insufficiency (OptnΔ(157) ) in which the TBK1-interacting N-terminus of optineurin was deleted. PAMP-stimulated cells from(More)
After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1(More)
  • 1