Marie-Paule Mingeot-Leclercq

Learn More
Aminoglycosides are highly potent, broad-spectrum antibiotics with many desirable properties for the treatment of lifethreatening infections (28). Their history begins in 1944 with streptomycin and was thereafter marked by the successive introduction of a series of milestone compounds (kanamycin, gentamicin, and tobramycin) which definitively established(More)
The potential of 14/15 membered macrolides to cause phospholipidosis has been prospectively assessed, and structure-effects examined, using combined experimental and conformational approaches. Biochemical studies demonstrated drug binding to phosphatidylinositol-containing liposomes and inhibition of the activity of lysosomal phospholipase A1 toward(More)
Aminoglycosides have long been one of the commonest causes of drug-induced nephrotoxicity (137). Although a clear recognition of the patientand treatment-related risk factors (91), combined with the once-a-day schedule and effective monitoring procedures (98), have definitely improved the situation over what prevailed in the early 1980s (115), we are still(More)
Kidney cortex apoptosis was studied with female Wistar rats treated for 10 days with gentamicin and netilmicin at daily doses of 10 or 20 mg/kg of body weight and amikacin or isepamicin at daily doses of 40 mg/kg. Apoptosis was detected and quantitated using cytological (methyl green-pyronine) and immunohistochemical (terminal(More)
The dicationic macrolide antibiotic azithromycin inhibits the uptake of horseradish peroxidase (HRP) by fluid-phase pinocytosis in fibroblasts in a time- and concentration-dependent fashion without affecting its decay (regurgitation and/or degradation). The azithromycin effect is additive to that of nocodazole, known to impair endocytic uptake and transport(More)
The advent of Staphylococcus aureus strains that are resistant to virtually all antibiotics has increased the need for new antistaphylococcal agents. An example of such a potential therapeutic is lysostaphin, an enzyme that specifically cleaves the S. aureus peptidoglycan, thereby lysing the bacteria. Here we tracked over time the structural and physical(More)
The O-octanoylation of human ghrelin is a natural post-translational modification that enhances its binding to model membranes and could potentially play a central role in ghrelin biological activities. Here, we aimed to clarify the mechanisms that drive ghrelin to the membrane and hence to its receptor that mediates most of its endocrinological effects. As(More)
Several homeodomains and homeodomain-containing proteins enter live cells through a receptor- and energy-independent mechanism. Translocation through biological membranes is conferred by the third alpha-helix of the homeodomain, also known as Penetratin. Biophysical studies demonstrate that entry of Penetratin into cells requires its binding to surface(More)
Gentamicin accumulates in lysosomes and induces apoptosis in kidney proximal tubules and renal cell lines. Using LLC-PK1 cells, we have examined the concentration- and time-dependency of the effects exerted by gentamicin (1-3 mM; 0-3 days) on (i) lysosomal stability; (ii) activation of mitochondrial pathway; (iii) occurrence of apoptosis (concentrations(More)
The pharmacodynamic properties governing the activities of antibiotics against intracellular Staphylococcus aureus are still largely undetermined. Sixteen antibiotics of seven different pharmacological classes (azithromycin and telithromycin [macrolides]; gentamicin [an aminoglycoside]; linezolid [an oxazolidinone]; penicillin V, nafcillin, ampicillin, and(More)