Marie-Laure Boucheret

Learn More
We present a multiuser synchronization scheme for tracking the mobile’s uplink time and frequency offsets. It uses the redundancy introduced by the cyclic prefix and does not need additional pilots. We show performance results of an orthogonal frequency division multiplexing (OFDM)-based radio interface based on universal mobile telecommunication system(More)
This article deals with Minimum Mean Square Error (MMSE) turbo equalization of nonlinear interference using a volterra series decomposition of the underlying nonlinear channel. Although it has been often argued that linear MMSE based equalization is unsuited for cancelling nonlinear interference, we show that this common belief is not true in a strict(More)
In this paper, we describe a new carrier phase estimator, called TD estimator, suited to transmission schemes based on convolutional turbo-codes. The foreseen application is multimedia telecommunication systems with geostationary satellites at Ka-band. For these systems, the on-board receiver has to operate at low SNR to fulfill up-link link budgets and the(More)
This paper proposes an improvement of the random multiple access scheme for satellite communication named Multislot coded ALOHA (MuSCA). MuSCA is a generalization of Contention Resolution Diversity Slotted ALOHA (CRDSA). In this scheme, each user transmits several parts of a single codeword of an error correcting code instead of sending replicas. At the(More)
In this paper, we introduce Multi-Slots Coded ALOHA (MuSCA) as a multiple random access method for satellite communications. This scheme can be considered as a generalization of the Contention Resolution Diversity Slotted Aloha (CRDSA) mechanism. Instead of transmitting replicas, this system replaces them by several parts of a single word of an error(More)
Broadcasting systems have to deal with channel diversity in order to offer the best rate to the users. Hierarchical modulation is a practical solution to provide several rates in function of the channel quality. Unfortunately the performance evaluation of such modulations requires time consuming simulations. We propose in this paper a novel approach based(More)