Marie Kerjean

  • Citations Per Year
Learn More
In this paper, we have described a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted by bounded linear functions. So as to interpret nonlinear proofs of Linear Logic, we have used a notion of power series between(More)
We construct a denotational model of linear logic, whose objects are all the locally convex and separated topological vector spaces endowed with their weak topology. The negation is interpreted as the dual, linear proofs are interpreted as continuous linear functions, and non-linear proofs as sequences of monomials. We do not complete our constructions by a(More)
The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4].(More)
  • 1