Marie-Helene Grosbras

Learn More
Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of(More)
Human vision is an active process that involves shifting attention across the visual scene, with or without moving the eyes. Such shifts of attention can be generated at will (endogenously) or be triggered automatically, i.e., generated in response to exogenous stimuli including socially relevant cues such as someone else's gaze. What are the common and(More)
What are the brain mechanisms allowing a stimulus to enter our awareness? Some theories suggest that this process engages resources overlapping with those required for action control, but experimental support for these ideas is still required. Here, we investigated whether the human frontal eye field (FEF), an area known to control eye movements, is(More)
Most neuropsychological research on the perception of emotion concerns the perception of faces. Yet in everyday life, hand actions are also modulated by our affective state, revealing it, in turn, to the observer. We used functional magnetic resonance imaging (fMRI) to identify brain regions engaged during the observation of hand actions performed either in(More)
& When looking at one object, human subjects can shift their attention to another object in their visual field without moving the eyes. Such shifts of attention activate the same brain regions as those involved in the execution of eye movements. Here we investigate the role of one of the main cortical oculomotor area, namely, the frontal eye field (FEF), in(More)
Face, hands, and body movements are powerful signals essential for social interactions. In the last 2 decades, a large number of brain imaging studies have explored the neural correlates of the perception of these signals. Formal synthesis is crucially needed, however, to extract the key circuits involved in human motion perception across the variety of(More)
Together with the frontal and parietal eye fields, the supplementary eye field (SEF) is involved in the performance and control of voluntary and reflexive saccades and of ocular pursuit. This region was first described in non-human primates and is rather well localized on the dorsal surface of the medial frontal cortex. In humans the site of the SEF is(More)
Visual exploration is organized in sequences of saccadic eye movements that depend on both perceptual and cognitive context. Using functional magnetic resonance imaging, we studied the neural basis of sequential oculomotor behavior and its dependence on different types of memory by analyzing cerebral activity during performance of newly learned and familiar(More)
OBJECT The goal of this study was to investigate the anatomical localization and functional role of human frontal eye fields (FEFs) by comparing findings from two independently conducted studies. METHODS In the first study, 3-tesla functional magnetic resonance (fMR) imaging was performed in 14 healthy volunteers divided into two groups: the first group(More)
number may not be closely related to the actual number of individuals, but the mathematical theories of genetic drift could still work. But unfortunately, the randomness associated with recombination has different mathematical properties to the random sampling of gametes (Figure 1). With background selection or hitchhiking, if an allele frequency increases(More)