Learn More
Dysregulation of the fear system is at the core of many psychiatric disorders. Much progress has been made in uncovering the neural basis of fear learning through studies in which associative emotional memories are formed by pairing an initially neutral stimulus (conditioned stimulus, CS; e.g., a tone) to an unconditioned stimulus (US; e.g., a shock).(More)
Recent research on changing fears has examined targeting reconsolidation. During reconsolidation, stored information is rendered labile after being retrieved. Pharmacological manipulations at this stage result in an inability to retrieve the memories at later times, suggesting that they are erased or persistently inhibited. Unfortunately, the use of these(More)
Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying(More)
Long-term potentiation (LTP) and long-term depression (LTD) are currently the most widely investigated models of the synaptic mechanisms underlying learning and memory. Previous research has shown that induction of LTP increases measures of pyramidal cell dendritic morphology in the hippocampus and layers III and V of the neocortex. However, to date there(More)
Memories that are emotionally arousing generally promote the survival of species; however, the systems that modulate emotional learning can go awry, resulting in pathological conditions such as post-traumatic stress disorders, phobias, and addiction. Understanding the conditions under which emotional memories can be targeted is a major research focus as the(More)
After fear conditioning (e.g., by pairing a tone to a shock), memory retrieval typically leads to fear expression (e.g., freezing to the tone). Here, we examined the effect of a conditioned rat's fear memory retrieval on a naïve cage-mate's behavior to the conditioned stimulus. We show that rats exposed to a novel tone in the presence of a cage-mate(More)
The effect of experimentally induced seizure activity on the functional reorganization of motor maps has not previously been investigated. Furthermore, while the functional reorganization of motor maps has been thought to involve increases in synaptic communication, there has yet to be a test of this hypothesis. Here we show that repeated seizure activity(More)
Controlling learned defensive responses through extinction does not alter the threat memory itself, but rather regulates its expression via inhibitory influence of the prefrontal cortex (PFC) over amygdala. Individual differences in amygdala-PFC circuitry function have been linked to trait anxiety and posttraumatic stress disorder. This finding suggests(More)
The cortex is not necessary for rats to engage in play fighting, but it is necessary for them to modify their pattern of play fighting in different contexts. Two experiments were conducted to determine the role of the motor cortex (MC). Rats with bilateral ablations of the MC performed on Postnatal Day 10 failed to show the normally present age-related(More)
Fear memories are notoriously difficult to erase, often recovering over time. The longstanding explanation for this finding is that, in extinction training, a new memory is formed that competes with the old one for expression but does not otherwise modify it. This explanation is at odds with traditional models of learning such as Rescorla-Wagner and(More)