Learn More
The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation-ion mobility separation-mass spectrometry (MALDI-IMS-MS) profiling and imaging methodology has been used to(More)
MALDI-mass spectrometry imaging (MALDI-MSI) is a technique that allows proteomic information, that is, the spatial distribution and identification of proteins, to be obtained directly from tissue sections. The use of in situ enzymatic digestion as a sample pretreatment prior to MALDI-MSI analysis has been found to be useful for retrieving protein(More)
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI-mass spectrometry(More)
Subvisible proteinaceous particles which are present in all therapeutic protein formulations are in the focus of intense discussions between health authorities, academics and biopharmaceutical companies in the context of concerns that such particles could promote unwanted immunogenicity via anti-drug antibody formation. In order to provide further(More)
A commercial hybrid quadrupole time-of-flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO(4) laser. The laser operating in frequency-tripled mode (lambda = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 microJ at 5-10 kHz and(More)
Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass(More)
Whilst it might be desirable to be able to purchase an up to date mass spectrometry platform and dedicate it to mass spectrometry imaging, this is not the situation initially for many laboratories. There are a variety of methods by which existing mass spectrometers can be upgraded/adapted to perform mass spectrometry imaging using MALDI, DESI or LAESI as(More)
MALDI-mass spectrometry imaging (MALDI-MSI) has been shown to allow the study of protein distribution and identification directly within formalin-fixed paraffin-embedded (FFPE) tissue sections. However, direct protein identification from tissue sections remains challenging due to signal interferences and/or existing post-translational or other chemical(More)
  • 1