Marie-Claire Méchin

Learn More
OBJECTIVE Autoantibodies to citrullinated proteins (ACPAs) are specific for rheumatoid arthritis (RA) and probably are involved in its pathophysiology. Citrullyl residues, posttranslationally generated by peptidyl arginine deiminase (PAD), are indispensable components of ACPA-targeted epitopes. The aim of this study was to identify which PAD isotypes are(More)
Peptidylarginine deiminases (PAD) catalyze the conversion of arginine residues to citrullines. Five isoforms are known that present distinct tissue locations. In the epidermis, like in the skin, only PAD1, 2, and 3 are expressed. Their pattern of expression in skin appendages is not known. Here, confocal microscopy analysis using highly specific antibodies(More)
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by a disturbed epidermal barrier. In a subset of patients, this is explained by nonsense mutations in the gene encoding filaggrin (FLG). OBJECTIVES We sought to evaluate the respective role of FLG mutations and proinflammatory cytokines and to assess the expression of(More)
Peptidylarginine deiminases (PADs) convert arginine residues in proteins into citrullines. They are suspected to be involved in multiple sclerosis and rheumatoid arthritis pathophysiology, and they play a role in epidermis homeostasis and possibly in regulation of gene expression through histone modification. In humans, four isoforms encoded by the genes(More)
Filaggrin-2 (FLG2), a member of the S100-fused type protein family, shares numerous features with filaggrin (FLG), a key protein implicated in the epidermal barrier functions. Both display a related structural organization, an identical pattern of expression and localization in human epidermis, and proteolytic processing of a large precursor. Here, we(More)
Post-translational conversion of arginine to citrulline residues is catalyzed by peptidylarginine deiminases (PAD). Although the existence of five isoforms of PAD has been reported in rodents and humans, their tissue distribution, substrate specificity, and physiological function have yet to be explored. In the epidermis, deimination of filaggrin and(More)
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the(More)
Long-range cis elements are critical regulators of transcription, particularly for clustered paralogous genes. Such are the five PADI genes in 1p35-36 encoding peptidylarginine deiminases, which catalyze deimination, a Ca2+-dependent post-translational modification. Deimination has been implicated in the pathophysiology of severe human diseases such as(More)
Deimination corresponds to the transformation of arginine residues within a peptide sequence into citrulline residues. Catalyzed by peptidylarginine deiminases, it decreases the net positive charge of proteins, alters intra and intermolecular ionic interactions and probably the folding of target proteins. Deimination has recently been implicated in several(More)