Marie Björnholm

Learn More
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS We combined human insulin/glucose clamp physiological studies(More)
We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min.(More)
We examined the effect of physiological hyperinsulinemia on insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity in skeletal muscle from six lean-to-moderately obese NIDDM patients and six healthy subjects. A rise in serum insulin levels from approximately 60 to approximately 650 pmol/l increased(More)
The increasing incidence of obesity in developed nations represents an ever-growing challenge to health care by promoting diabetes and other diseases. The discovery of the hormone, leptin, a decade ago has facilitated the acquisition of new knowledge regarding the regulation of energy balance. A great deal remains to be discovered regarding the molecular(More)
Hypothalamic neurons expressing the long form of the leptin receptor (LRb) mediate important leptin actions. Although it has been suggested that leptin crosses the blood-brain barrier (BBB) via a specific transport system, we hypothesized the existence of a population of hypothalamic arcuate nucleus (ARC) neurons that senses leptin independently of this(More)
Type II diabetes is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue and liver and pancreatic beta-cell defects. Since the skeletal muscle accounts for approx. 75% of whole body insulin-stimulated glucose uptake, defects in this tissue play a major role in the impaired glucose homoeostasis in Type II(More)
To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects before and during a euglycemic-hyperinsulinemic clamp. IGT(More)
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and(More)
The molecular signaling mechanisms by which muscle contractions lead to changes in glucose metabolism and gene expression remain largely undefined. We assessed whether exercise activates MAP kinase proteins (ERK1/2, SEK1, and p38 MAP kinase) as well as Akt and PYK2 in skeletal muscle from healthy volunteers obtained during and after one-leg cycle ergometry(More)
Complete spinal cord lesion leads to profound metabolic abnormalities and striking changes in muscle morphology. Here we assess the effects of electrically stimulated leg cycling (ESLC) on whole body insulin sensitivity, skeletal muscle glucose metabolism, and muscle fiber morphology in five tetraplegic subjects with complete C5-C7 lesions. Physical(More)