Marie-Alda Gilles-Gonzalez

Learn More
Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the regulation of circadian rhythm. Here we show that both PAS domains of NPAS2 bind heme as a prosthetic group and that the heme status controls DNA binding in vitro. NPAS2-BMAL1 heterodimers, existing in(More)
A commonly observed coupling of sensory domains to GGDEF-class diguanylate cyclases and EAL-class phosphodiesterases has long suggested that c-di-GMP synthesizing and degrading enzymes sense environmental signals. Nevertheless, relatively few signal ligands have been identified for these sensors, and even fewer instances of in vitro switching by ligand have(More)
The FixL proteins are biological oxygen sensors that restrict the expression of specific genes to hypoxic conditions. FixL's oxygen-detecting domain is a heme binding region that controls the activity of an attached histidine kinase. The FixL switch is regulated by binding of oxygen and other strong-field ligands. In the absence of bound ligand, the heme(More)
The most common physiological strategy for detecting the gases oxygen, carbon monoxide, and nitric oxide is signal transduction by heme-based sensors, a broad class of modular proteins in which a heme-binding domain governs the activity of a neighboring transmitter domain. Different structures are possible for the heme-binding domains in these sensors, but,(More)
Exposure of Mycobacterium tuberculosis to hypoxia is known to alter the expression of many genes, including ones thought to be involved in latency, via the transcription factor DevR (also called DosR). Two sensory kinases, DosT and DevS (also called DosS), control the activity of DevR. We show that, like DevS, DosT contains a heme cofactor within an(More)
The expression of the nitrogen-fixation genes of Rhizobium meliloti is controlled by oxygen. These genes are induced when the free oxygen concentration is reduced to microaerobic levels. Two regulator proteins, FixL and FixJ, initiate the oxygen-response cascade, and the genes that encode them have been cloned. The fixL product seems to be a transmembrane(More)
The second messenger cyclic diguanylic acid (c-di-GMP) is implicated in key lifestyle decisions of bacteria, including biofilm formation and changes in motility and virulence. Some challenges in deciphering the physiological roles of c-di-GMP are the limited knowledge about the cellular targets of c-di-GMP, the signals that control its levels, and the(More)
Globin-coupled sensors are heme-binding signal transducers in Bacteria and Archaea in which an N-terminal globin controls the activity of a variable C-terminal domain. Here, we report that BpeGReg, a globin-coupled diguanylate cyclase from the whooping cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3'-5')-cyclic diguanosine(More)
The FixL/FixJ two-component regulatory system of Sinorhizobium meliloti controls the expression of nitrogen fixation genes in response to O2. When phosphorylated, the transcription factor FixJ binds to the nifA and fixK promoters in S. meliloti and induces expression of the corresponding genes, both of which encode key transcription activators.(More)
Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C.(More)