Learn More
OBJECTIVE Recent studies have demonstrated that hydrogen sulfide (H(2)S) is produced within the vessel wall from L-cysteine regulating several aspects of vascular homeostasis. H(2)S generated from cystathione γ-lyase (CSE) contributes to vascular tone; however, the molecular mechanisms underlying the vasorelaxing effects of H(2)S are still under(More)
OBJECTIVE Proteinase-activated receptor-2 is widely expressed in vascular tissue and in highly vascularized organs in humans and other species. Its activation mainly causes endothelium-dependent vasorelaxation in vitro and hypotension in vivo. Here, using nonobese diabetic (NOD) mice at different disease stages, we have evaluated the role of PAR2 in the(More)
Angiopoietins (Angs) are endothelium-selective ligands that exert most of their actions through the Tie-2 receptor. It is widely accepted that Ang-1 promotes the structural integrity of blood vessels and exhibits anti-inflammatory properties. In contrast, the role of Ang-2 remains less clear because it has been shown to behave as a Tie-2 agonist or(More)
OBJECTIVE Clinical studies have demonstrated that hyperglycaemia represents a major risk factor in the development of the endothelial impairment in diabetes, which is the first step in vascular dysfunction. Using non-obese diabetic mice, we have evaluated the role of the adrenergic system and eNOS on progression of the disease METHODS AND RESULTS When(More)
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2)S), considered as a novel gas transmitter, is produced endogenously in mammalian tissue from L-cysteine by two enzymes, cystathionine β-synthase and cystathionine γ-lyase. Recently, it has been reported that H(2)S contributes to the local and systemic inflammation in several experimental animal models. We(More)
Injection of carrageenan 1% (50 microl) in the mouse paw causes a biphasic response: an early inflammatory response that lasts 6 h and a second late response that peaks at 72 h, declining at 96 h. Only mice 7- or 8-week old, weighing 32-34 g, displayed a consistent response in both phases. In 8-week-old mice, myeloperoxidase (MPO) levels are significantly(More)
Vascular system is constituted by a complex and articulate network, e.g. arteries, arterioles, venules and veins, that requires a high degree of coordination between different elemental cell types. Proteinase-activated receptors (PARs) constitute a recent described family of 7-transmembrane G protein-coupled receptors that are activated by proteolysis. In(More)
Sphingosine-1-phosphate (S1P) has been shown to regulate numerous and diverse cell functions, including smooth muscle contraction. Here we assessed the role of S1P/Sphingosine kinase (SPK) pathway in the regulation of bronchial tone. Our objective was to determine, using an integrated pharmacologic and molecular approach, (1) the role of S1P as endogenous(More)
In this work, we report the solution structure, thermodynamic studies, and the pharmacological properties of a new modified thrombin binding aptamer (TBA) containing a G-LNA residue, namely d(5'-GGTTGGTGTGGTTGg-3'), where upper case and lower case letters represent DNA and LNA residues, respectively. NMR and CD spectroscopy, as well as molecular dynamics(More)
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts both as an extracellular ligand for endothelial differentiation gene receptor family and as an intracellular second messenger. Cellular levels of S1P are low and tightly regulated by sphingosine kinase (SPK). Recent studies have suggested that eNOS pathway may function as a downstream(More)