Marianne Vázquez-Claverie

Learn More
Increasing evidence suggests a pivotal role for neuroinflammation in the pathogenesis of Parkinson disease, but whether activated microglia participate in disease progression remains unclear. To clarify this issue, we determined the numbers of activated microglial cells in the substantia nigra pars compacta and ventral tegmental area of monkeys subacutely(More)
The involvement of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus (CuN), known as the mesencephalic locomotor area, in the pathophysiology of parkinsonian symptoms is receiving increasing attention. Taking into account the role of dopamine (DA) in motor control and its degeneration in Parkinson's disease, this neurotransmitter could(More)
We studied the histochemical phenotype of carotid body (CB) cells in the adult rat. In addition to tyrosine hydroxylase (TH), type I cells expressed numerous growth factors such as glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF),(More)
To elucidate the role of the prostaglandin synthase cyclooxygenase-2 (Cox-2) and the mechanisms of dopaminergic (DA) neurodegeneration, monkeys were injected subacutely or chronically (n = 5/group) with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Chronically treated animals developed parkinsonian signs and were killed 6 months after the last treatment;(More)
We investigated the impact of the nigrostriatal lesion on the olfactory tyrosine hydroxylase-immunoreactive (TH-ir) cells in monkeys. The majority of these TH-ir cells appeared in the glomerular layer of the olfactory bulb and many were immature but functional dopaminergic neurons. In parkinsonian monkeys the number of olfactory dopaminergic neurons(More)
Progenitor cells generated in the subventricular zone (SVZ) migrate toward the olfactory bulb (OB), where they differentiate into neurons. Growth factors have been shown to promote neurogenesis in the SVZ/OB-system while dopaminergic lesion exerts an opposite effect. As carotid body (CB) cells express growth factors here we study the impact of intrastriatal(More)
In non-human primates, striatal tyrosine hydroxylase-immunoreactive (TH-ir) cells are increased in number after dopamine depletion and in response to trophic factor delivery. As carotid body cells contain the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF), we evaluated the number, morphology and neurochemistry of these TH-ir cells, in(More)
  • 1