Marianne L Seto

Learn More
The syndromic craniosynostoses, usually involving multiple sutures, are hereditary forms of craniosynostosis associated with extracranial phenotypes such as limb, cardiac, CNS and tracheal malformations. The genetic etiology of syndromic craniosynostosis in humans is only partially understood. Syndromic synostosis has been found to be associated with(More)
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves(More)
Bone morphogenetic proteins (BMPs) regulate essential processes during organogenesis, and a functional understanding of these secreted proteins depends on identification of their target cells. In this study, we generate a transgenic reporter for organogenesis studies that we use to define BMP pathway activation in the developing kidney. Mouse strains(More)
FGF-8 is a member of the family of fibroblast growth factors and is expressed during vertebrate embryo development. Eight potential FGF-8 isoforms are generated by alternative splicing in mice, several of which are expressed during embryogenesis in epithelial locations. The significance of the multiple isoforms is currently unknown. In this report, we(More)
Craniosynostosis, the premature fusion of one or more cranial sutures, affects 1 in 2,500 live births. Isolated single-suture fusion is most prevalent, with sagittal synostosis occurring in 1/5,000 live births. The etiology of isolated (nonsyndromic) single-suture craniosynostosis is largely unknown. In syndromic craniosynostosis, there is a highly(More)
R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic(More)
Baller-Gerold syndrome is characterized by craniosynostosis and preaxial upper limb malformations. Wide heterogeneity exists with regard to the presence of additional anomalies. Most of the 31 reported cases involve other malformations, including cardiac, Central Nervous System (CNS), and urogenital anomalies. Baller-Gerold syndrome is thought to have(More)
Since its first description by Virchow in 1851, craniosynostosis has been known as a potentially serious condition resulting in premature fusion of skull sutures. Traditionally, craniosynostosis has been regarded as an event that occurs early in fetal development, resulting in a skull shape at birth that is determined by the suture or sutures involved. In(More)
Multisutural craniosynostosis that includes bilateral lambdoid and sagittal synostosis (BLSS) results in a very characteristic head shape with frontal bossing, turribrachycephaly, biparietal narrowing, occipital concavity, and inferior displacement of the ears. This entity has been reported both in the genetics literature as craniofacial dyssynostosis and(More)
Seathre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome, associated with loss-of-function mutations in the basic helix-loop-helix transcription factor, TWIST1. The biologic activity of TWIST1 has been implicated in the inhibition of differentiation of multiple cell lineages. Therefore, premature fusion of cranial sutures(More)