Learn More
G-protein-coupled receptor kinases (GRKs) are involved in the regulation of many G-protein-coupled receptors. As opposed to the other GRKs, such as rhodopsin kinase (GRK1) or beta-adrenergic receptor kinase (beta ARK, GRK2), no receptor substrate for GRK4 has been so far identified. Here we show that GRK4 is expressed in cerebellar Purkinje cells, where it(More)
We used primary cultures of cortical neurons to examine the relationship between beta-amyloid toxicity and hyperphosphorylation of the tau protein, the biochemical substrate for neurofibrillary tangles of Alzheimer's brain. Exposure of the cultures to beta-amyloid peptide (betaAP) induced the expression of the secreted glycoprotein Dickkopf-1 (DKK1). DKK1(More)
Western blot analysis of protein extracts from rat liver revealed the presence of the mGlu5 receptor, one of the G-protein-coupled receptors activated by glutamate (named "metabotropic glutamate receptors" or mGlu receptors). mGlu5 expression was particularly high in extracts from isolated hepatocytes, where levels were comparable with those seen in the rat(More)
RT-PCR combined with immunoblotting showed the expression of group-I (mGlu1 and 5) and group-II (mGlu2 and 3) metabotropic glutamate receptors in whole mouse thymus, isolated thymocytes and TC-1S thymic stromal cell line. Cytofluorimetric analysis showed that mGlu-5 receptors were absent in CD4(-)/CD8(-) but present in more mature CD4(+) CD8(+) and(More)
The group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), S-4-carboxy-3-hydroxyphenylglycine (4C3HPG), and (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) protected mouse cortical neurons grown in mixed cultures against excitotoxic degeneration induced by a 10 min pulse with NMDA.(More)
Group-II metabotropic glutamate (mGlu) receptors (mGlu2/3 receptors) were highly expressed in various regions (telencephalon, optic tectum, and cerebellum, but not vagal lobe) of the goldfish brain. In the goldfish telencephalon, expression of mGlu2/3 receptors was even higher than in the rat cerebral cortex. In contrast, mGlu5 receptors showed low levels(More)
Hypertension affects nearly 20% of the population in Western countries and strongly increases the risk for cardiovascular diseases. In the pathogenesis of hypertension, the vasoactive peptide of the renin-angiotensin system, angiotensin II and its G protein-coupled receptors (GPCRs), play a crucial role by eliciting reactive oxygen species (ROS) and(More)
The mGlu2/3 receptor agonists 4-carboxy-3-hydroxyphenylglycine (4C3HPG) and LY379268 attenuated NMDA toxicity in primary cultures containing both neurons and astrocytes. Neuroprotection was abrogated by PD98059 and LY294002, which inhibit the mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI-3-K) pathways, respectively.(More)
We examined the effect of a chronic imipramine treatment (10 mg/kg, i.p., once daily for 21 days) on the expression and function of metabotropic glutamate (mGlu) receptors in discrete regions of the rat brain. Chronic imipiramine treatment up-regulated the expression of mGlu2/3 receptor proteins in the hippocampus, nucleus accumbens, cerebral cortex and(More)
We combined the use of knock-out mice and subtype-selective antagonists [2-methyl-6-(phenylethynyl)pyridine (MPEP) and (E)-2-methyl-6-(2-phenylethenyl)-pyridine (SIB1893)] to examine whether endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the pathophysiology of nigro-striatal damage in the(More)