Mariana Benítez

Learn More
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical(More)
The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses.(More)
Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts.(More)
Accumulated genetic data are stimulating the use of mathematical and computational tools for studying the concerted action of genes during cell differentiation and morphogenetic processes. At the same time, network theory has flourished, enabling analyses of complex systems that have multiple elements and interactions. Reverse engineering methods that use(More)
The iterative application of experimental and theoretical approaches to genetics and morphogenesis has proven extremely useful to many ends. On the one hand, alternating experimentation and modeling has allowed to integrate vast and complex sets of data into formal frameworks (Albert, 2007; Alvarez-Buylla et al., 2007; Pu and Brady, 2010). This alone has(More)
The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic(More)
In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the(More)
Over the last few decades, the Arabidopsis thaliana root stem cell niche (RSCN) has become a model system for the study of plant development and stem cell niche dynamics. Currently, many of the molecular mechanisms involved in RSCN maintenance and development have been described. A few years ago, we published a gene regulatory network (GRN) model(More)
In Arabidopsis thaliana, leaf and root epidermis hairs exhibit contrasting spatial arrangements even though the genetic networks regulating their respective cell-fate determination have very similar structures and components. We integrated available experimental data for leaf and root hair patterning in dynamic network models which may be reduced to(More)
Dynamical models are instrumental for exploring the way information required to generate robust developmental patterns arises from complex interactions among genetic and non-genetic factors. We address this fundamental issue of developmental biology studying the leaf and root epidermis of Arabidopsis. We propose an experimentally-grounded model of gene(More)