Marian Joëls

Learn More
In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and(More)
In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences(More)
The effects of stress on learning and memory are not always clear: both facilitating and impairing influences are described in the literature. Here we propose a unifying theory, which states that stress will only facilitate learning and memory processes: (i) when stress is experienced in the context and around the time of the event that needs to be(More)
The adrenal hormone corticosterone transcriptionally regulates responsive genes in the rodent hippocampus through nuclear mineralocorticoid and glucocorticoid receptors. Via this genomic pathway the hormone alters properties of hippocampal cells slowly and for a prolonged period. Here we report that corticosterone also rapidly and reversibly changes(More)
Maternal licking and grooming (LG) in infancy influences stress responsiveness and cognitive performance in the offspring. We examined the effects of variation in the frequency of pup LG on morphological, electrophysiological, and behavioral aspects of hippocampal synaptic plasticity under basal and stress-like conditions. We found shorter dendritic branch(More)
The impact of stress on brain function is increasingly recognized. Various substances are released in response to stress and can influence distinct neuronal circuits, but the functional advantages of having such a diversity of stress mediators remain unclear. Individual neurotransmitter, neuropeptide and steroid stress mediators have specific spatial and(More)
Corticosteroid hormones secreted by the adrenal cortex protect the brain against adverse events and are essential for cognitive performance. However, in recent literature, the central action of corticosteroids has mostly been portrayed as damaging and disruptive to memory formation. We argue that this paradox can be explained by appreciating the specific(More)
Stressful events activate the amygdala and a network of associated brain regions. Studies in both humans and rodents indicate that noradrenaline has a prominent role in this activation. Noradrenaline induces a hypervigilant state that helps to remember the event. This mnemonic effect is enhanced when the situation is so stressful that substantial amounts of(More)
Acute stress suppresses new cell birth in the hippocampus in several species. Relatively little is known, however, on how chronic stress affects the turnover, i.e. proliferation and apoptosis, of the rat dentate gyrus (DG) cells, and whether the stress effects are lasting. We investigated how 3 weeks of chronic unpredictable stress would influence the(More)
Corticosteroids - secreted after stress - have profound effects on brain and behavior. These effects are mediated by mineralocorticoid and glucocorticoid receptors, which are abundantly expressed in limbic neurons. The role of mineralocorticoid receptors in higher brain functions has never been well understood. Here we argue that the recently discovered(More)