Learn More
A simple, inexpensive photolithographic method for surface patterning deformable, solvated substrates is demonstrated using photoactive poly(ethylene glycol) (PEG)-diacrylate hydrogels as model substrates. Photolithographic masks were prepared by printing the desired patterns onto transparencies using a laser jet printer. Precursor solutions containing(More)
OBJECT Thoracic sympathectomy has evolved as a treatment option for patients with hyperhidrosis and pain disorders. In the past, surgical procedures were highly invasive and caused significant morbidity, but the minimally invasive thoracoscopic procedure provides detailed visualization of the sympathetic ganglia and is associated with minimal postoperative(More)
Chronic voice impairment due to scarring of the vocal fold (VF) lamina propria (LP) can be debilitating in terms of quality of life. Due to the dependence of normal VF vibration on proper VF geometry, an implant inserted to restore appropriate shape and pliability to scarred LP should ideally maintain its insertion-dimensions while being replaced by newly(More)
Mechanical conditioning represents a potential means to enhance the biochemical and biomechanical properties of tissue engineered vascular grafts (TEVGs). A pulsatile flow bioreactor was developed to allow shear and pulsatile stimulation of TEVGs. Physiological 120 mmHg/80 mmHg peak-to-trough pressure waveforms can be produced at both fetal and adult heart(More)
Poly(ethylene glycol) (PEG) hydrogels have recently begun to be studied for the treatment of scarred vocal fold lamina propria due, in part, to their tunable mechanical properties, resistance to fibroblast-mediated contraction, and ability to be polymerized in situ. However, pure PEG gels lack intrinsic biochemical signals to guide cell behavior and(More)
Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation, has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel is intrinsically cell(More)
Although scaffold material properties are known to critically impact cell behavior, it has proven difficult to correlate specific cell responses to isolated scaffold parameters, inhibiting rational design of scaffold material properties. The aim of this study was to validate a systematic approach for evaluating the influence of initial scaffold modulus and(More)
A major roadblock in the development of an off-the-shelf, small-caliber vascular graft is achieving rapid endothelialization of the conduit while minimizing the risk of thrombosis, intimal hyperplasia, and mechanical failure. To address this need, a collagen-mimetic protein derived from group A Streptococcus, Scl2.28 (Scl2), was conjugated into a(More)
While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In(More)
A number of treatments are being investigated for vocal fold (VF) scar, including designer implants. The aim of the present study was to validate a 3D model system for probing the effects of various bioactive moieties on VF fibroblast (VFF) behavior toward rational implant design. We selected poly(ethylene glycol) diacrylate (PEGDA) hydrogels as our(More)