Maria di Summa

Learn More
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone(More)
Abnormalities of synaptic transmission and plasticity in the hippocampus represent an integral part of the altered programming triggered by early life stress. Prenatally restraint stressed (PRS) rats develop long-lasting biochemical and behavioral changes, which are the expression of an anxious/depressive-like phenotype. We report here that PRS rats showed(More)
The functional role of presynaptic release-regulating metabotropic glutamate type 7 (mGlu7) receptors in hippocampal GABAergic terminals was investigated. Mouse hippocampal synaptosomes were preloaded with [(3)H]D-γ-aminobutyric acid ([(3)H]GABA) and then exposed in superfusion to 12 mM KCl. The K(+)-evoked [(3)H]GABA release was inhibited by the mGlu7(More)
Among the growing family of ribosomally synthesized, post-translationally modified peptides, particularly intriguing are class III lanthipeptides containing the triamino acid labionin. In the course of a screening program aimed at finding bacterial cell wall inhibitors, we discovered a new lanthipeptide produced by an Actinoplanes sp. The molecule,(More)
The ability of nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit cyclooxygenase (Cox)-1 and Cox-2 underlies the therapeutic efficacy of these drugs, as well as their propensity to damage the gastrointestinal (GI) epithelium. This toxic action greatly limits the use of NSAIDs in inflammatory bowel disease (IBD) and other chronic pathologies. Fatty(More)
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis(More)
Innovative analysis methods applied to data extracted by off-the-shelf peripherals can provide useful results in activity recognition without requiring large computational resources. In this paper a framework is proposed for automated posture and gesture recognition, exploiting depth data provided by a commercial tracking device. The detection problem is(More)
Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca²⁺-dependent [³H]dopamine ([³H]DA) exocytosis. These AMPA receptors cross-talk with co-localized(More)
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) autoreceptors exist on glutamate hippocampal terminals. Aimed at investigating whether these autoreceptors traffic constitutively, (S)AMPA-evoked [(3)H]D-ASP release from synaptosomes enriched with peptides that impede the interaction of GluA2 subunits with cytosolic proteins involved in receptor(More)
One of the main obstacles toward the discovery of effective anti-Alzheimer drugs is the multifactorial nature of its etiopathology. Therefore, the use of multitarget-directed ligands has emerged as particularly suitable. Such ligands, able to modulate different neurodegenerative pathways, for example, amyloid and tau cascades, as well as cognitive and(More)