Maria del Mar Hershenson

Learn More
We describe a new method for determining component values and transistor dimensions for CMOS operational amplifiers (op-amps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result, the amplifier design problem can be expressed as a special form of(More)
We present several new simple and accurate expressions for the DC inductance of square, hexagonal, octagonal, and circular spiral inductors. We evaluate the accuracy of our expressions, as well as several previously published inductance expressions, in two ways: by comparison with three-dimensional field solver predictions and by comparison with our own(More)
We present a method for optimizing and automating component and transistor sizing for CMOS operational amplifiers. We observe that a wide variety of performance measures can be formulated as posynomial functions of the design variables. As a result, amplifier design problems can be formulated as a geometric program, a special type of convex optimization(More)
We present an efficient method for optimal design and synthesis of CMOS inductors for use in RF circuits. This method uses the the physical dimensions of the inductor as the design parameters and handles a variety of specifications including fixed value of inductance, minimum self-resonant frequency, minimum quality factor, etc. Geometric constraints that(More)
We present a technique for enhancing the bandwidth of gigahertz broadband circuitry by using optimized on-chip spiral inductors as shunt-peaking elements. The series resistance of the on-chip inductor is incorporated as part of the load resistance to permit a large inductance to be realized with minimum area and capacitance. Simple, accurate inductance(More)
We present a method for optimizing and automating component and transistor sizing for CMOS LC oscillators. We observe that the performance measures can be formulated as <italic>posynomial</italic> functions of the design variables. As a result, the LC oscillator design problems can be posed as a <italic>geometric program</italic>, a special type of(More)
This paper presents a 115-mW Global Positioning System radio receiver that is implemented in a 0.5m CMOS technology. The receiver includes the complete analog signal path, comprising a low-noise amplifier, I-Q mixers, on-chip active filters, and 1-bit analog-digital converters. In addition, it includes a low-power phase-locked loop that synthesizes the(More)