Maria V. Astapova

Learn More
Cytotoxins from cobra venom are known to manifest cytotoxicity in various cell types. It is widely accepted that the plasma membrane is a target of cytotoxins, but the mechanism of their action remains obscure. Using the confocal spectral imaging technique, we show for the first time that cytotoxins from cobra venom penetrate readily into living cancer(More)
A non-traumatic electroporation procedure was developed to load exogenous cytochrome c into the cytoplasm and to study the apoptotic effect of cytochrome c, its K72-substitued mutants and “yeast → horse” hybrid cytochrome c in living WEHI-3 cells. The minimum apoptosis-activating intracellular concentration of horse heart cytochrome c was estimated to be(More)
Cytotoxins are positively charged polypeptides that constitute about 60% of all proteins in cobra venom; they have a wide spectrum of biological activities. By CD spectroscopy, cytotoxins CT1 and CT2 Naja oxiana, CT3 Naja kaouthia, and CT1 and CT2 Naja haje were shown to have similar secondary structure in an aqueous environment, with dominating β-sheet(More)
There are different glycosylated proteins in snake venoms, but no glycosylated representatives of a large family of three-fingered toxins have previously been detected. A new glycoprotein was isolated from the venom of the Thai cobra Naja kaouthia. MALDI MS of the glycoprotein contained an array of peaks in the range from approximately 8900 to approximately(More)
An effective synthesis of 5'-carbamoylphosphonyl-[6-3H]-AZT was developed from [6-3H]-AZT. For the synthesized compound, chemical and enzymatic stability were determined and its penetration across HL-60 cell membranes was studied.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain(More)
SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell(More)
A new 8.2 kDa differentiation factor has been purified to homogeneity from the cultural media of human myelogenous HL-60 leukemia cells induced by retinoic acid. cDNA clones encoding this factor were isolated from a cDNA library prepared from HL-60 differentiated cells and their nucleotide sequence has been determined. The deduced amino acid sequence of the(More)
Six-membered peptide fragment TGENHR (HLDF-6) was identified in the HL-60 cell culture of human promyelocyte leukemia treated with retinoic acid when studying the differentiation factor HLDF of this cell line. HLDF-6 retains the ability of the full-size factor to induce the differentiation and arrest the proliferation of the starting HL-60 cells. It was(More)
The ABB-df artificial protein was prepared by inserting the TGENHR biologically active peptide corresponding to the 41-46 sequence of the differentiation factor for the HL-60 cell line of the human promyelocyte leukemia into the N-terminus of the polypeptide chain of albebetin, an artificial protein with the preset structure. The ABB-df protein was found to(More)