Learn More
The aim of the present work was to evaluate several methods for analyzing the viability of bacteria after antibacterial photocatalytic treatment. Colony-forming unit (CFU) counting, metabolic activity assays based on resazurin and phenol red and the Live/Dead® BacLight™ bacterial viability assay (Live/Dead staining) were employed to assess(More)
In this letter, we demonstrate a new principle for diagnostics based on DNA sequence detection using single-stranded oligonucleotide tagged magnetic nanobeads. The target DNA is recognized and volume-amplified to large coils by circularization of linear padlock probes through probe hybridization and ligation, followed by rolling circle amplification (RCA).(More)
Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative(More)
We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and(More)
In this study we present a scheme for quantitative determination of biofilm viability offering significant improvement over existing methods with metabolic assays. Existing metabolic assays for quantifying viable bacteria in biofilms usually utilize calibration curves derived from planktonic bacteria, which can introduce large errors due to significant(More)
It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained(More)
The effects of mesoporous silica nano- (270 nm) and microparticles (2.5 microm) with surface areas above 500 m2/g were evaluated on human monocyte-derived dendritic cells (MDDC). Size- and concentration-dependent effects were seen where the smaller particles and lower concentrations affected MDDC to a minor degree compared to the larger particles and higher(More)
The possibility to fast-load biomimetic hydroxyapatite coatings on surgical implant with the antibiotics Amoxicillin, Gentamicin sulfate, Tobramycin and Cephalothin has been investigated in order to develop a multifunctional implant device offering sustained local anti-bacterial treatment and giving the surgeon the possibility to choose which antibiotics to(More)
OBJECTIVES The aim of the present work was to perform the first in vitro evaluation of a new interfacial bond-promoting material-and-method concept for on-demand long term bacteria inhibition in dental restoration procedures. METHODS The bioactivity, mechanical bonding strength and photocatalytic bactericidal properties, induced by low dose ultraviolet-A(More)
All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based(More)