Maria Stanislawa Magdon-Maksymowicz

Learn More
In this paper we present results of numerical calculation of the Penna bit-string model of biological aging, modified for the case of a -dependent mutation rate m(a), where a is the parent's age. The mutation rate m(a) is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that m(a) increases with age a. As(More)
There are some analytical solutions of the Penna model of biological aging; here, we discuss the approach by Coe et al. (Phys. Rev. Lett. 89, 288103, 2002), based on the concept of self-consistent solution of a master equation representing the Penna model. The equation describes transition of the population distribution at time t to next time step (t + 1).(More)
In this paper we present Green function technique applied to calculations of spin-spin correlations in systems governed by Ising Hamiltonian. This offers approximate yet reasonably accurate analytical results, as an alternative approach to direct computer simulation. Local spin operators are represented in terms of particle operators for fermions. Chain of(More)
A computer experiment study of population evolution and its dynamics is presented for two competing species (A and B) which share two habitats (1 and 2) of a limited environmental capacity. The Penna model of biological aging, based on the concept of defective mutation accumulation, was adopted for migrating population. In this paper, we assume and(More)
Some modifications of the simple asexual Penna model, enriched by epigenetic contributions, are presented. The standard bit-string Penna model of biological aging and population evolution is based on an inherited DNA structure which defines the future life of a newly born individuals, when genes are activated by the biological clock, and the predefined(More)