Maria Seidel

Learn More
Structural magnetic resonance imaging studies have documented reduced gray matter in acutely ill patients with anorexia nervosa to be at least partially reversible following weight restoration. However, few longitudinal studies exist and the underlying mechanisms of these structural changes are elusive. In particular, the relative speed and completeness of(More)
BACKGROUND Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation, extreme weight loss, and alterations in brain structure. Structural magnetic resonance imaging studies have documented brain volume reductions in acute AN, but it is unclear whether they are 1) regionally specific, or 2) reversible following weight restoration.(More)
BACKGROUND Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. METHODS This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related(More)
Anorexia nervosa (AN) is associated with exaggerated self-control and altered reward-based decision making, but the underlying neural mechanisms are poorly understood. Consistent with the notion of excessive cognitive control, we recently found increased dorsal anterior cingulate cortex (dACC) activation in acutely ill patients (acAN) on lose-shift trials(More)
Several studies support the assumption that the brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of eating disorders. In the present cross-sectional and longitudinal study, we investigated BDNF levels in patients with anorexia nervosa (AN) at different stages of their illness and the association with cognitive(More)
The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of(More)
The neural underpinnings of anorexia nervosa (AN) are poorly understood. Results from existing functional brain imaging studies using disorder-relevant food- or body-stimuli have been heterogeneous and may be biased due to varying compliance or strategies of the participants. In this study, resting state functional connectivity imaging was used. To explore(More)
In anorexia nervosa (AN), volitional inhibition of rewarding behaviors, such as eating, involves a conflict between the desire to suppress appetite and the inherent motive to consume. This conflict is thought to have costs that carry over into daily life, e.g., triggering negative affect and/or recurring ruminations, which may ultimately impact long term(More)
BACKGROUND We have previously shown increased resting-state functional connectivity (rsFC) in the frontoparietal network (FPN) and the default mode network (DMN) in patients with acute anorexia nervosa. Based on these findings we investigated within-network rsFC in patients recovered from anorexia nervosa to examine whether these abnormalities are a state(More)
OBJECTIVE The ability of individuals with anorexia nervosa (AN) to resist hunger and restrict caloric intake is often believed to reflect an unusual amount of self-control. However, the underlying neural substrate is poorly understood, especially in adolescent patients. METHOD Functional magnetic resonance imaging was used during an intertemporal choice(More)