Learn More
Interindividual variation in DNA-methylation level is widespread in the human genome, despite its critical role in regulating gene expression. The nature of this variation, including its tissue-specific nature, and the role it may play in human phenotypic variation and disease is still poorly characterized. The placenta plays a critical role in regulating(More)
BACKGROUND Development of human tissue is influenced by a combination of intrinsic biological signals and extrinsic environmental stimuli, both of which are mediated by epigenetic regulation, including DNA methylation. However, little is currently known of the normal acquisition or loss of epigenetic markers during fetal and postnatal development. RESULTS(More)
X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI(More)
BACKGROUND The human placenta facilitates the exchange of nutrients, gas and waste between the fetal and maternal circulations. It also protects the fetus from the maternal immune response. Due to its role at the feto-maternal interface, the placenta is subject to many environmental exposures that can potentially alter its epigenetic profile. Previous(More)
BACKGROUND Genomic imprinting is an important epigenetic process involved in regulating placental and foetal growth. Imprinted genes are typically associated with differentially methylated regions (DMRs) whereby one of the two alleles is DNA methylated depending on the parent of origin. Identifying imprinted DMRs in humans is complicated by species- and(More)
Genome-wide levels of DNA methylation vary between tissues, and compared with other tissues, the placenta has been reported to demonstrate a global decrease in methylation as well as decreased methylation of X-linked promoters. Methylation is one of many features that differentiate the active and inactive X, and it is well established that CpG island(More)
DNA methylation of CpGs located in two types of repetitive elements-LINE1 (L1) and Alu-is used to assess "global" changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few(More)
The characterization of cell-free DNA (cfDNA) originating from placental trophoblast in maternal plasma provides a powerful tool for non-invasive diagnosis of fetal and obstetrical complications. Due to its placental origin, the specific epigenetic features of this DNA (commonly known as cell-free fetal DNA) can be utilized in creating universal 'fetal'(More)
The incidence of neural tube defects (NTDs) declined by about 40 % in Canada with the introduction of a national folic acid (FA) fortification program. Despite the fact that few Canadians currently exhibit folate deficiency, NTDs are still the second most common congenital abnormality. FA fortification may have aided in reducing the incidence of NTDs by(More)
  • 1