Learn More
The mammalian neocortex is established from neural stem and progenitor cells that utilize specific transcriptional and environmental factors to create functional neurons and astrocytes. Here, we examined the mechanism of Sox2 action during neocortical neurogenesis and gliogenesis. We established a robust Sox2 expression in neural stem and progenitor cells(More)
SOX2 is a key neurodevelopmental gene involved in maintaining the pluripotency of stem cells and proliferation of neural progenitors and astroglia. Two evolutionally conserved enhancers, SRR1 and SRR2, are involved in controlling SOX2 expression during neurodevelopment; however, the molecular mechanisms regulating their activity are not known. We have(More)
The potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNA(Met) represented a polymorphism;(More)
In recent years, GDNF has emerged as a protective and restorative agent in several models of neurodegeneration; however, the exact molecular mechanisms responsible for these effects are not yet fully understood. Here we examined the effects of astrocytes secreting GDNF on neurons subjected to 6OHDA toxicity using in vitro neuron-astroglia co-cultures.(More)
Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information(More)
We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced(More)
Although glutamate excitotoxicity has long been implicated in neuronal cell death associated with a variety of neurological disorders, the molecular mechanisms underlying this process are not yet fully understood. In part, this is due to the lack of relevant experimental cell systems recapitulating the in vivo neuronal environment, mainly neuronal-glial(More)
Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor β (TGF-β) superfamily, plays important roles in the development of various tissues and organs in mouse and human. In particular, BMP7 is critical for the formation of the nervous system and it is considered to have therapeutic potential in brain injury and stroke. One approach(More)
BACKGROUND Alzheimer's disease (AD) is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel(More)
Brain injury continues to be one of the leading causes of disability worldwide. Despite decades of research, there is currently no pharmacologically effective treatment for preventing neuronal loss and repairing the brain. As a result, novel therapeutic approaches, such as cell-based therapies, are being actively pursued to repair tissue damage and restore(More)
  • 1