Maria R. D'Orsogna

Learn More
The evolution of human cooperation has been the subject of much research, especially within the framework of evolutionary public goods games, where several mechanisms have been proposed to account for persistent cooperation. Yet, in addressing this issue, little attention has been given to games of a more adversarial nature, in which defecting players,(More)
Containing the spread of crime in urban societies remains a major challenge. Empirical evidence suggests that, if left unchecked, crimes may be recurrent and proliferate. On the other hand, eradicating a culture of crime may be difficult, especially under extreme social circumstances that impair the creation of a shared sense of social responsibility.(More)
We model the kinetics of ligand-receptor systems, where multiple ligands may bind and unbind to the receptor, either randomly or in a specific order. Equilibrium occupation and first occurrence of complete filling of the receptor are determined and compared. At equilibrium, receptors that bind ligands sequentially are more likely to be saturated than those(More)
Locusts exhibit two interconvertible behavioral phases, solitarious and gregarious. While solitarious individuals are repelled from other locusts, gregarious insects are attracted to conspecifics and can form large aggregations such as marching hopper bands. Numerous biological experiments at the individual level have shown how crowding biases conversion(More)
Charge transfer along the base-pair stack in DNA is modeled in terms of thermally assisted tunneling between adjacent base pairs. The key element of the approach in this paper is the notion that this tunneling between base pairs that fluctuate significantly from their nominal orientation is rate limited by the requirement of optimal alignment. We focus on(More)
In this paper, we study cooperative control algorithms using pairwise interactions, for the purpose of controlling flocks of unmanned vehicles. An important issue is the role the potential plays in the stability and possible collapse of the group as agent number increases. We model a set of interacting Dubins vehicles with fixed turning angle and speed. We(More)
We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is(More)
Cellular cargo can be bound to cytoskeletal filaments by one or more active or passive molecular motors. Recent experiments have shown that the presence of auxiliary, nondriving motors results in an enhanced processivity of the cargo, compared to the case of a single active driving motor alone. We model the observed cooperative transport process using a(More)
Enveloped viruses attach to host cells by binding to receptors on the cell surface. For many viruses, entry occurs via membrane fusion after a sufficient number of receptors have engaged ligand proteins on the virion. Under conditions where the cell surface receptor densities are low, recruitment of receptors may be limited by diffusion rather than by(More)
Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by(More)