Maria Quasdorff

Learn More
UNLABELLED With about 350 million virus carriers, hepatitis B virus (HBV) infection remains a major health problem. HBV is a noncytopathic virus causing persistent infection, but it is still unknown whether host recognition of HBV may activate an innate immune response. We describe that upon infection of primary human liver cells, HBV is recognized by(More)
Dendritic cells (DC) of hepatitis B virus (HBV) carriers have been reported to exhibit functional impairment. Possible explanations for this phenomenon are infection of HBV by DC or alteration of DC function by HBV. We therefore analyzed whether DC support the different steps of HBV infection and replication: uptake, deposition of the HBV genome in the(More)
Hepatitis B virus (HBV) is tightly controlled by a number of noncytotoxic mechanisms. This control occurs within the host hepatocyte at different steps of the HBV replication cycle. HBV persists by establishing a nuclear minichromosome, HBV cccDNA, serving as a transcription template for the viral pregenome and viral mRNAs. Nucleoside/nucleotide analogues(More)
BACKGROUND & AIMS Induction of heme oxygenase-1 (HO-1) has been shown to be beneficial in immune-mediated liver damage. We now investigate the effects of HO-1 induction in models of human hepatitis B virus (HBV) infection. METHODS Adenoviral transfer of an HBV 1.3 genome into wild-type mice was used as a model for acute hepatitis B. HBV transgenic animals(More)
BACKGROUND/AIMS Four different ribozymes (Rz) targeting the hepatitis C virus (HCV) 5'-non-coding region (NCR) at nucleotide (nt) positions GUA 165 (Rz1), GUC 270 (Rz2), GUA 330 (Rz3) and GCA 348 (Rz1293) were compared for in vitro cleavage using a 455 nt HCV RNA substrate. The GUA 330 (Rz3) and GCA 348 (Rz1293) ribozymes, both targeting the HCV loop IV(More)
Hepatitis B virus (HBV) is an important human pathogen, which targets the liver extremely efficient, gaining access to hepatocytes by a so far unknown receptor and replicating in a hepatocyte-specific fashion. Cell differentiation seems to determine HBV replication. We here show that the level of hepatocyte differentiation, as indicated by hepatocyte(More)
BACKGROUND The 5'-noncoding region (5'NCR) of the HCV-genome comprises an internal ribosome entry site essential for HCV-translation/replication. Phosphorothioate oligodeoxynucleotides (tS-ODN) complementary to this region can inhibit HCV-translation in vitro. In this study, bile acid conjugated tS-ODN were generated to increase cell-selective inhibition of(More)
BACKGROUND & AIMS In this study, adenoviral vectors encoding an antisense RNA complementary to the 5' non-coding region (5'NCR) of the HCV-genome were generated to inhibit HCV-RNA gene expression in cell culture and in vivo. METHODS First and second-generation (with E4-deletion) adenoviruses encoding the HCV5'NCR in antisense direction (Ad-NCRas and(More)
TO THE EDITOR: I read the recent article by Daar and colleagues (1) with great interest. A portion of the results of this important study has already been published (2), with the more recent results still raising comments and questions. As written in the article, 2 regimens will be considered equivalent if a 2-sided CI for the hazard ratio (HR) of virologic(More)
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths, worldwide. MicroRNAs, inhibiting gene expression by targeting various transcripts, are involved in genomic dysregulation during hepatocellular tumorigenesis. In previous studies, microRNA-198 (miR-198) was shown to be significantly downregulated in HCV-positive hepatocellular(More)