Learn More
Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary(More)
Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a(More)
Due to its role during meiosis, variations in the PRDM9 nucleotide sequence have been associated with different pathologies of meiotic origin: infertility (Irie et al. 2009), de novo genomic disorders (Berg et al. 2010; Borel et al. 2012), and childhood leukemogenesis (Hussin et al. 2013) (OMIM accession number: 609760). So far, alleles of the PRDM9 zinc(More)
DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a disorder caused by a 22q11.2 deletion mediated by non-allelic homologous recombination (NAHR) between low-copy repeats (LCRs). We have evaluated the role of LCR22 genomic architecture and PRDM9 variants as DGS/VCFS predisposing factors. We applied FISH using fosmid probes on chromatin fibers to analyze the(More)
  • 1