Maria Musgaard

Learn More
P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens.(More)
Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 A above the central site has prompted debate about whether this vestibular site in the(More)
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P(II)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. This minireview focuses on the(More)
Published, JBC Papers in Press, February 11, 2013, DOI 10.1074/jbc.R112.436550 Maike Bublitz, Maria Musgaard, Hanne Poulsen, Lea Thøgersen , Claus Olesen**, Birgit Schiøtt, J. Preben Morth, Jesper Vuust Møller**, and Poul Nissen From the Centre for Membrane Pumps in Cells and Disease (PUMPkin) and the Centre for Insoluble Protein Structures, Danish National(More)
Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating(More)
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA) transports two Ca²⁺ ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca²⁺ ions have been located via protein(More)
The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid(More)
Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) transports two Ca(2+) ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still(More)
The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of(More)
Desensitization is an important mechanism curtailing the activity of ligand-gated ion channels (LGICs). Although the structural basis of desensitization is not fully resolved, it is thought to be governed by physicochemical properties of bound ligands. Here, we show the importance of an allosteric cation-binding pocket in controlling transitions between(More)