Learn More
Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 A above the central site has prompted debate about whether this vestibular site in the(More)
Desensitization is an important mechanism curtailing the activity of ligand-gated ion channels (LGICs). Although the structural basis of desensitization is not fully resolved, it is thought to be governed by physicochemical properties of bound ligands. Here, we show the importance of an allosteric cation-binding pocket in controlling transitions between(More)
Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating(More)
Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we(More)
Allosteric modulators of pentameric ligand-gated ion channels are thought to act on elements of the pathways that couple agonist binding to channel gating. Using α4β2 nicotinic acetylcholine receptors and the α4β2-selective positive modulators 17β-estradiol (βEST) and desformylflustrabromine (dFBr), we have identified pathways that link the binding sites(More)
Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD(More)
KEY POINTS Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive(More)
The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of(More)
  • 1