Maria Luisa Damiani

Learn More
Securing access to data in location-based services and mobile applications requires the definition of spatially aware access control systems. Even if some approaches have already been proposed either in the context of geographic database systems or context-aware applications, a comprehensive framework, general and flexible enough to cope with spatial(More)
Analysis of trajectory data is the key to a growing number of applications aiming at global understanding and management of complex phenomena that involve moving objects (e.g. worldwide courier distribution, city traffic management, bird migration monitoring). Current DBMS support for such data is limited to the ability to store and query raw movement (i.e.(More)
Mobile devices with positioning capabilities allow users to participate in novel and exciting location-based applications. For instance, users may track the whereabouts of their acquaintances in location-aware social networking applications, e.g., GoogleLatitude. Furthermore, users can request information about landmarks in their proximity. Such scenarios(More)
Focus on movement data has increased as a consequence of the larger availability of such data due to current GPS, GSM, RFID, and sensors techniques. In parallel, interest in movement has shifted from raw movement data analysis to more application-oriented ways of analyzing segments of movement suitable for the specific purposes of the application. This(More)
As mobile computing devices are becoming increasingly dominant in enterprise and government organizations, the need for fine-grained access control in these environments continues to grow. Specifically, advanced forms of access control can be deployed to ensure authorized users can access sensitive resources only when in trusted locations. One technique(More)
The widespread adoption of location-based services (LBS) raises increasing concerns for the protection of personal location information. A common strategy, referred to as obfuscation (or cloaking), to protect location privacy is based on forwarding the LBS provider a coarse user location instead of the actual user location. Conventional approaches, based on(More)
The widespread adoption of location-based services (LBS) raises increasing concerns for the protection of personal location information. A common strategy, referred to as obfuscation, to protect location privacy is based on forwarding the LSB provider a coarse user location instead of the actual user location. Conventional approaches, based on such(More)
The widespread adoption of location-based services (LBS) raises increasing concerns for the protection of personal location information. To protect location privacy the usual strategy is to obfuscate the actual position of the user with a coarse location and then forward the obfuscated location to the LBS provider. Existing techniques for location(More)
The widespread adoption of location-based services (LBS) raises increasing concerns for the protection of personal location information. A common strategy, referred to as obfuscation, to protect location privacy is based on forwarding the LSB provider a coarse user location instead of the actual user location. Conventional approaches, based on such(More)