Maria Luciana Teles Fiuza

Learn More
Corynebacterium glutamicum contains four serine/threonine protein kinases (STPKs) named PknA, PknB, PknG, and PknL. Here we present the first biochemical and comparative analysis of all four C. glutamicum STPKs and investigate their potential role in cell shape control and peptidoglycan synthesis during cell division. In vitro assays demonstrated that,(More)
The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue(More)
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium(More)
Of the five promoters detected for the ftsZ gene in Corynebacterium glutamicum, three were located within the coding region of the upstream ftsQ gene and two within the intergenic ftsQ-ftsZ region. The most distant ftsZ promoter showed activity in Escherichia coli and controlled high-level transcriptional expression of ftsZ in C. glutamicum. Quantitative(More)
Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of(More)
Distinct neuronal populations show differential sensitivity to global ischemia, with hippocampal CA1 neurons showing greater vulnerability compared to cortical neurons. The mechanisms that underlie differential vulnerability are unclear, and we hypothesize that intrinsic differences in neuronal cell biology are involved. Dendritic spine morphology changes(More)
Corynebacteria grow by wall extension at the cell poles, with DivIVA being an essential protein orchestrating cell elongation and morphogenesis. DivIVA is considered a scaffolding protein able to recruit other proteins and enzymes involved in polar peptidoglycan biosynthesis. Partial depletion of DivIVA induced overexpression of cg3264, a previously(More)
Corynebacterium glutamicum is a rod-shaped actinomycete with a distinct model of peptidoglycan synthesis during cell elongation, which takes place at the cell poles and is sustained by the essential protein DivIVA(CG) (C. glutamicum DivIVA). This protein contains a short conserved N-terminal domain and two coiled-coil regions: CC1 and CC2. Domain deletions(More)
NMDA-type glutamate receptors (NMDARs) guide the activity-dependent remodeling of excitatory synapses and associated dendritic spines during critical periods of postnatal brain development. Whereas mature NMDARs composed of GluN1 and GluN2 subunits mediate synapse plasticity and promote spine growth and stabilization, juvenile NMDARs containing GluN3A(More)
OBJECTIVE assess the adherence levels to antiretroviral therapy in people coinfected with HIV/tuberculosis and correlate these levels with the sociodemographic and clinical variables of the study population. METHOD cross-sectional study involving 74 male and female adults coinfected with HIV/tuberculosis. For the data collection, a sociodemographic and(More)