Learn More
Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720,(More)
Gangliosides are a family of glycosphingolipids that contain sialic acid. Although they are abundant on neuronal cell membranes, their precise functions and importance in the central nervous system (CNS) remain largely undefined. We have disrupted the gene encoding GD3 synthase (GD3S), a sialyltransferase expressed in the CNS that is responsible for the(More)
Sphingosine-1-phosphate (S1P), a lipid signaling molecule that regulates many cellular functions, is synthesized from sphingosine and ATP by the action of sphingosine kinase. Two such kinases have been identified, SPHK1 and SPHK2. To begin to investigate the physiological functions of sphingosine kinase and S1P signaling, we generated mice deficient in(More)
Sphingosine-1-phosphate (S1P) elicits diverse cellular responses through a family of G-protein-coupled receptors. We have shown previously that genetic disruption of the S1P(1) receptor, the most widely expressed of the family, results in embryonic lethality because of its key role within endothelial cells in regulating the coverage of blood vessels by(More)
Sphingosine-1-phosphate (S1P) stimulates signaling pathways via G-protein-coupled receptors and triggers diverse cellular processes, including growth, survival, and migration. In S1P1 receptor-deficient embryos, blood vessels were incompletely covered by vascular smooth muscle cells (VSMCs), indicating the S1P1 receptor regulates vascular maturation.(More)
S1P(1) is a widely distributed G protein-coupled receptor whose ligand, sphingosine 1-phosphate, is present in high concentrations in the blood. The sphingosine 1-phosphate receptor-signaling pathway is believed to have potent effects on cell trafficking in the immune system. To determine the precise role of the S1P(1) receptor on T-cells, we established a(More)
Although much is known about the migration of T cells from blood to lymph nodes, less is known about the mechanisms regulating the migration of T cells from tissues into lymph nodes through afferent lymphatics. Here we investigated T cell egress from nonlymphoid tissues into afferent lymph in vivo and developed an experimental model to recapitulate this(More)
S1P1 receptor expression is required for the egress of newly formed T cells from the thymus and exit of mature T and B cells from secondary lymphoid organs. In this study, we deleted the expression of the S1P1 receptor gene (S1pr1) in developing B cells in the bone marrow. Although B cell maturation within the bone marrow was largely normal in the B(More)
Gangliosides--glycosphingolipids that contain sialic acid--are concentrated in plasma membrane lipid domains that are specialized for cell signaling. Recent evidence indicates that gangliosides have two different roles in cell signaling. They can act in cis to modulate tyrosine kinase receptor function and in trans as ligands for receptors that facilitate(More)
Extracellular sphingolipid signaling has been implicated as an essential event in vascular development. Sphingosine-1-phosphate (S1P), through interactions with G protein-coupled receptors, regulates functions of endothelial and smooth muscle cells (SMCs)-the major cell types of the vasculature. The knockout of the gene encoding the S1P1 receptor (formally(More)