Maria K. Janowska

Learn More
Aggregation of α-synuclein (αSyn), the primary protein component in Lewy body inclusions of patients with Parkinson's disease, arises when the normally soluble intrinsically disordered protein converts to amyloid fibrils. In this work, we provide a mechanistic view of the role of N-terminal acetylation on fibrillation by first establishing a quantitative(More)
Pathology in Parkinson's disease is linked to self-association of α-Synuclein (αS) into pathogenic oligomeric species and highly ordered amyloid fibrils. Developing effective therapeutic strategies against this debilitating disease is critical and βS, a pre-synaptic protein that co-localizes with αS, can act as an inhibitor of αS assembly. Despite the(More)
Alpha synuclein (αsyn) fibrils are found in the Lewy Bodies of patients with Parkinson's disease (PD). The aggregation of the αsyn monomer to soluble oligomers and insoluble fibril aggregates is believed to be one of the causes of PD. Recently, the view of the native state of αsyn as a monomeric ensemble was challenged by a report suggesting that αsyn(More)
NMR interchain paramagnetic relaxation enhancement (PRE) techniques are a very powerful approach for detecting transient interchain interactions between intrinsically disordered proteins. These experiments, requiring a mixed sample containing a 1:1 ratio of isotope-labeled (15)N protein and natural abundance (14)N protein with a paramagnetic spin label,(More)
β-synuclein (βS) is a homologue of α-synuclein (αS), the major protein component of Lewy bodies in patients with Parkinson's disease. In contrast to αS, βS does not form fibrils, mitigates αS toxicity in vivo and inhibits αS fibril formation in vitro. Previously a missense mutation of βS, P123H, was identified in patients with Dementia with Lewy Body(More)
Alpha-synuclein (αS) is the primary protein associated with Parkinson's disease, and undergoes aggregation from its intrinsically disordered monomeric form to a cross-β fibrillar form. The closely related homolog beta-synuclein (βS) is essentially fibril resistant under cytoplasmic physiological conditions. Toxic gain of function by βS has been linked to(More)
  • 1