Maria Jędrzejowska

Learn More
Autosomal recessive proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder resulting from functional loss of survival motor neuron 1 (SMN1). Homozygous absence of SMN1 due to deletion or gene conversion accounts for about 96% of SMA cases. In the remaining 4%, subtle SMN1 mutations are commonly identified. Here, we describe two novel(More)
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder characterised by the degeneration of motor neurons and progressive muscle weakness. It is caused by homozygous deletions in the survival motor neuron gene on chromosome 5. SMA shows a wide range of clinical severity, with SMA type I patients often dying before 2 years of age, whereas(More)
Infantile X-linked spinal muscular atrophy (SMAX2) is a rare form of spinal muscular atrophy manifesting as severe hypotonia, areflexia, arthrogryposis, facial weakness and cryptorchidism, and frequently accompanied by bone fractures. We present a male patient with SMAX2 who presented with typical symptoms at birth, preceded by reduced fetal movements in(More)
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterised by degeneration of motor neurones in the spinal cord. The symptoms of the disease are determinated by mutations of SMN1 gene. About 98% of SMA patients show homozygous absence of exon 7 SMN1 gene, the rest carry small intragenic mutations. Molecular(More)
In this report, we present three families in which we identified asymptomatic carriers of a homozygous absence of the SMN1 gene. In the first family, the bialleleic deletion was found in three of four siblings: two affected brothers (SMA type 3a and 3b) and a 25-years-old asymptomatic sister. All of them have four SMN2 copies. In the second family, four of(More)
BACKGROUND The application of molecular methods has enhanced and enlarged the diagnostics of spinal muscular atrophy (SMA) and its carriership. It allows for reliable epidemiological studies which are of importance to demography and genetic counseling. METHODS This study sought to evaluate the incidence of SMA in Poland, on the basis of the prevalence of(More)
Survival Motor Neuron 1 (SMN1) is a causative gene for autosomal recessive infantile and juvenile proximal spinal muscular atrophy. SMN1 duplications have recently been found to increase susceptibility to amyotrophic lateral sclerosis. The role of centromeric SMN copy (SMN2) has been postulated in progressive muscular atrophy (PMA). The aim of this study(More)
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations of the SMN1 gene. It is characterized by significant phenotype variability. In this study, we analyzed possible phenotype modifiers of the disease - the size of the deletion in the SMA region, the number of SMN2 gene copies, as well as the effect of gender.(More)
Kennedy's disease is a rare X-linked spinal and bulbar muscular atrophy (SBMA). A degenerative process of the motor neurons is associated with an increase in the number of CAG repeats encoding a polyglutamine stretch within the androgen receptor. Despite a distinctive clinical phenotype, SBMA can be misdiagnosed, usually due to the lack of clear family(More)
Quantitative EMG reflects denervation of muscles after lower motor neuron degeneration in spinal muscular atrophy (SMA) but does not reflect actual motor unit loss. The aim of our study was to assess the value of the multipoint incremental motor unit number estimation (MUNE) method in the modification by Shefner in estimating motor unit loss in SMA. The(More)