Maria Irene Givogri

Learn More
Perinatal hypoxia/ischemia (H/I) is the leading cause of neurologic injury resulting from birth complications. Recent advances in critical care have dramatically improved the survival rate of infants suffering this insult, but approximately 50% of survivors will develop neurologic sequelae such as cerebral palsy, epilepsy or cognitive deficits. Here we(More)
The postnatal subventricular zone (SVZ) is a niche for continuous neurogenesis in the adult brain and likely plays a fundamental role in self-repair responses in neurodegenerative conditions. Maintenance of the pool of neural stem cells within this area depends on cell-cell communication such as that provided by the Notch signaling pathway. Notch1 receptor(More)
Activity of the Notch1 gene is known to inhibit oligodendrocyte (OL) differentiation in vitro. We tested the hypothesis that the Notch1 pathway regulates in vivo myelin formation, by examining brain myelination of Notch1 receptor null heterozygotes mutant animals (Notch1(+/-)). We show that a deficiency in Notch1 expression leads to increased abundance of(More)
This study characterized the therapeutic benefits of combining hematogenous cell replacement with lentiviral-mediated gene transfer of galactosylceramidase (GALC) in Twitcher mice, a bona fide model for Krabbe disease. Bone marrow cells and GALC-lentiviral vectors were administered intravenously without any preconditioning to newborn Twitcher pups before(More)
The myelin basic protein (MBP) gene produces two families of proteins, the classic MBPs, important for myelination of the CNS, and the golli proteins, whose biological role in oligodendrocytes (OLs) is still unknown. The goals of this work were to study the in vitro pattern of expression of the golli products during OL differentiation and to compare it with(More)
The myelin basic protein (MBP) gene produces two families of structurally related proteins from three different promoters-the golli products, generated from the most upstream promoter, and the MBPs, produced from the two downstream promoters. In this report we describe the expression of golli proteins within some of the earliest neuronal populations of the(More)
BACKGROUND Demyelination in globoid cell leukodystrophy (GLD) is due to a deficiency of galactocerebrosidase (GALC) activity. Up to now, in vivo brain viral gene transfer of GALC showed modest impact on disease development in Twitcher mice, an animal model for GLD. Lentiviral vectors, which are highly efficient to transfer the expression of therapeutic(More)
In the past 6 years, our conception of the major myelin protein genes has begun to change significantly because of recent findings documenting the existence of new exons encoding other products of these genes. A decade ago the myelin basic protein (MBP) and proteolipid protein (PLP) genes were thought to be expressed solely in myelin-forming cells, and(More)
Neural stem cells appear to be best suited for regenerative therapy in neurological diseases. However, the effects of high levels of potentially toxic substances such as sulfatides--which accumulate in metachromatic leukodystrophy (MLD)--on this regenerative ability are still largely unclear. To start addressing this question, in vitro and in vivo(More)
Lipid rafts (LRs) are membrane realms characterized by high concentrations of cholesterol and sphingolipids. Often, they are portrayed as scaffolds on which many different signaling molecules can assemble their cascades. The idea of rafts as scaffolds is garnering significant attention as the consequences of LR disruption have been shown to be manifest in(More)