Maria Helena F. V. Fernandes

Learn More
Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical(More)
Thermally induced phase separation (TIPS) has proven to be a suitable method for the preparation of porous structures for tissue engineering applications, and particular attention has been paid to increasing the pore size without the use of possible toxic surfactants. Within this context, an alternative method to control the porosity of polymeric scaffolds(More)
OBJECTIVES Angiogenesis is closely associated with osteogenesis where reciprocal interactions between endothelial and osteoblast cells play an important role in bone regeneration. For these reasons, the aim of this work was to develop a co-culture system to study in detail any time-dependent interactions between human mesenchymal stem cells (HMSC) and human(More)
Human osteoblastic bone marrow cells were cultured for periods of up to 28 days in control conditions and on the surface of a glass reinforced hydroxyapatite composite (HA/G1) and commercial hydroxyapatite (HA) plasma-sprayed coatings, in the "as-received" condition and after immersion treatment in culture medium for 21 days. Cultures were characterized for(More)
In vivo research with animal models has been a preferred experimental system in bone-related biomedical research since, by approximation, it allows relevant data gathering regarding physiological and pathological conditions that could be of use to establish more effective clinical interventions. Animal models, and more specifically rodent models, have been(More)
The cytocompatibility of stainless steel 316L (SS 316L) corrosion products was investigated with particular focus on the dose- and time-effect of electrochemically dissolved SS and the corresponding separate metal ions on osteogenic bone marrow derived cells. Type AISI 316L stainless steel (Fe 63.9%, Cr 18.0%, Ni 12.5%, Mo 2.8%, Si 1.2%, Mn 1.6% and C(More)
Well-characterized human bone cell cultures have been regarded as a useful tool to study bone control mechanisms and also to analyse bone/biomaterials interactions. In the present study, human alveolar bone cells were cultured in alpha-minimal essential medium (alpha-MEM) containing 10% foetal bovine serum (FBS), 50 microg/ml ascorbic acid, 10 mM sodium(More)
Composite bone cements were prepared with bioactive glasses (MgO-SiO(2)-3CaO.P(2)O(5)) of different reactivities. The matrix of these so-called hydrophilic, partially degradable and bioactive cements was composed of a starch/cellulose acetate blend and poly(2-hydroxyethyl methacrylate). The addition of 30 wt.% of glasses to this system made them bioactive(More)
UNLABELLED Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. OBJECTIVES To develop alternative surface(More)
Composite bone cements were formulated with bioactive glass (MgO--SiO(2)--3CaO. P(2)O(5)) as the filler and hydrophilic matrix. The matrix was composed of a starch/cellulose acetate blend (SCA) as the solid component and a mixture of methylmethacrylate/acrylic acid (MMA/AA) as the liquid component. The curing parameters, mechanical properties, and bioactive(More)