Maria G. Veldhuizen

Learn More
Selective attention is thought to be associated with enhanced processing in modality-specific cortex. We used functional magnetic resonance imaging to evaluate brain response during a taste detection task. We demonstrate that trying to detect the presence of taste in a tasteless solution results in enhanced activity in insula and overlying operculum. The(More)
Over the last two decades, neuroimaging methods have identified a variety of taste-responsive brain regions. Their precise location, however, remains in dispute. For example, taste stimulation activates areas throughout the insula and overlying operculum, but identification of subregions has been inconsistent. Furthermore, literature reviews and summaries(More)
The insular cortex is implicated in general attention and in taste perception. The effect of selective attention to taste on insular responses may therefore reflect a general effect of attention or it may be (taste) modality specific. To distinguish between these 2 possibilities, we used functional magnetic resonance imaging to evaluate brain response to(More)
Despite distinct peripheral and central pathways, stimulation of both the olfactory and the gustatory systems may give rise to the sensation of sweetness. Whether there is a common central mechanism producing sweet quality sensations or two discrete mechanisms associated independently with gustatory and olfactory stimuli is currently unknown. Here we used(More)
Eating behavior is guided by a complex interaction between signals conveying information about energy stores, food availability, and palatability. How peripheral signals regulate brain circuits that guide feeding during sensation and consumption of a palatable food is poorly understood. We used fMRI to measure brain response to a palatable food (milkshake)(More)
The human orbitofrontal cortex (OFC) plays an important role in representing taste, flavor, and food reward. The primary role of the OFC in taste is thought to be the encoding of affective value and the computation of perceived pleasantness. The OFC also encodes retronasal olfaction and oral somatosensation. During eating, distinct sensory inputs fuse into(More)
Perception of the smell of a food precedes its ingestion and perception of its flavor. The neurobiological underpinnings of this association are not well understood. Of central interest is whether the same neural circuits code for anticipatory and consummatory phases. Here, we show that the amygdala and mediodorsal thalamus respond preferentially to food(More)
We used functional magnetic resonance imaging to test the hypothesis that the nature of the neural response to taste varies as a function of the task the subject is asked to perform. Subjects received sweet, sour, salty and tasteless solutions passively and while evaluating stimulus presence, pleasantness and identity. Within the insula and overlying(More)
Despite the importance of breaches of taste identity expectation for survival, its neural correlate is unknown. We used fMRI in 16 women to examine brain response to expected and unexpected receipt of sweet taste and tasteless/odorless solutions. During expected trials (70%), subjects heard "sweet" or "tasteless" and received the liquid indicated by the(More)
It is easier to detect mixtures of gustatory and olfactory flavorants than to detect either component alone. But does the detection of mixtures exceed the level predicted by probability summation, assuming independent detection of each component? To answer this question, we measured simple response times (RTs) to detect brief pulses of one of 3 flavorants(More)