Maria Fuller

Learn More
BACKGROUND In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory(More)
The original mucopolysaccharidosis type IIIA (MPS IIIA) mice were identified in a mixed background with contributions from four different strains. To ensure long-term stability and genetic homogeneity of this lysosomal storage disease (LSD) model, the aim of this study was to develop and characterize a C57BL/6 congenic strain. The B6.Cg-Sgsh(mps3a) strain(More)
Unprecedented demands are now placed on clinicians for early diagnosis as we enter into an era of advancing treatment opportunities for the mucopolysaccharidoses (MPS). Biochemical monitoring of any therapeutic avenue will also be prerequisite. To this end, we aimed to identify a range of urinary oligosaccharides that could be used to identify and(More)
Mucopolysaccharidosis type IIIA (MPS IIIA) results from lack of functional sulfamidase (SGSH), a lysosomal enzyme. Its substrate, heparan sulfate, and other secondarily-stored compounds subsequently accumulate primarily within the central nervous system (CNS), resulting in progressive mental deterioration and early death. Presently there is no treatment. As(More)
Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and(More)
Gaucher disease (GD), the most prevalent lysosomal storage disease, is caused by a deficiency of glucocerebrosidase (GCase). The identification of small molecules acting as agents for enzyme enhancement therapy is an attractive approach for treating different forms of GD. A thermal denaturation assay utilizing wild type GCase was developed to screen a(More)
Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder resulting from sulfamidase deficiency, which leads to accumulation of heparan sulfate within lysosomes. We have determined the time-course of accumulation of a disaccharide [hexosamine-N-sulfate[alpha-1,4]hexuronic acid; HNS-UA] marker of heparan sulfate storage(More)
The potential for gene therapy to be an effective treatment for cystic fibrosis (CF) airway disease has been limited by inefficient gene transfer vector particle delivery and lack of persistent gene expression. We have developed an airway conditioning process that, when combined with a human immunodeficiency virus (HIV)-derived lentivirus (LV) vector,(More)
Saturated fatty acids promote lipotoxic ER (endoplasmic reticulum) stress in pancreatic β-cells in association with Type 2 diabetes. To address the underlying mechanisms we employed MS in a comprehensive lipidomic screen of MIN6 β-cells treated for 48 h with palmitate. Both the overall mass and the degree of saturation of major neutral lipids and(More)
OBJECTIVE To evaluate the use of protein markers using immune-quantification assays and of metabolite markers using tandem mass spectrometry for the identification, at birth, of individuals who have a lysosomal storage disorder. METHODS A retrospective analysis was conducted of Guthrie cards that were collected from newborns in Denmark during the period(More)