Learn More
Signaling pathways initiated at the external cell surface or within the cytoplasm regulate transactivation of transcription factors and gene expression that are causally related to a number of critical cellular outcomes including proliferation, apoptosis, cell survival, and production of inflammatory cytokines. Asbestos, a ubiquitous pathogenic group of(More)
Only a fraction of subjects exposed to asbestos develop malignant mesothelioma (MM), suggesting that additional factors may render some individuals more susceptible. We tested the hypothesis that asbestos and Simian virus (SV40) are cocarcinogens. Asbestos and SV40 in combination had a costimulatory effect in inducing ERK1/2 phosphorylation and activator(More)
Malignant mesotheliomas (MMs) are very aggressive tumors that respond poorly to standard chemotherapeutic approaches. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in tumor aggressiveness, in part by mediating cell survival and reducing sensitivity to chemotherapy. Using antibodies recognizing the phosphorylated/activated form of(More)
Malignant mesothelioma is an aggressive cancer with no known cure, which has become a therapeutic challenge. Onconase is one of few chemotherapeutic agents that have been studied in patients with malignant mesothelioma that has the advantage of low toxicity and limited side effects. Here, we evaluate the effect of Onconase on killing of malignant(More)
Mesothelioma is a unique and insidious tumor associated historically with occupational exposure to asbestos. The transcription factor, activator protein-1 (AP-1) is a major target of asbestos-induced signaling pathways. Here, we demonstrate that asbestos-induced mesothelial cell transformation is linked to increases in AP-1 DNA binding complexes and the(More)
To elucidate genes important in development or repair of asbestos-induced lung diseases, gene expression was examined in mice after inhalation of chrysotile asbestos for 3, 9, and 40 days. We identified changes in the expression of genes linked to proliferation (cyclin B2, CDC20, and CDC28 protein kinase regulatory subunit 2), inflammation (CCL9, CCL6,(More)
Crocidolite asbestos elicits oxidative stress and cell proliferation, but the signaling cascades linked to these outcomes are unclear. To determine the role of mitogen-activated protein kinases (MAPK) in asbestos-induced cell signaling, we evaluated the effects of crocidolite asbestos, EGF and H2O2, on MAPK activation in murine lung epithelial cells (C10(More)
Malignant mesothelioma is a cancer with poor prognosis associated with exposures to asbestos. The mechanisms of asbestos-induced mesotheliomas are unclear, and studies are required to find diagnostic tools and therapies to improve the survival rates of patients. After oligonucleotide microarray analysis (Affymetrix array) of normal rat pleural mesothelial(More)
Human mesothelial cells (LP9/TERT-1) were exposed to low and high (15 and 75 microm(2)/cm(2) dish) equal surface area concentrations of crocidolite asbestos, nonfibrous talc, fine titanium dioxide (TiO2), or glass beads for 8 or 24 hours. RNA was then isolated for Affymetrix microarrays, GeneSifter analysis and QRT-PCR. Gene changes by asbestos were(More)
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) have emerged as important drug targets for diabetes. Drugs that activate PPARgamma, such as the thiazolidinediones (TZDs), are widely used for treatment of Type 2 diabetes mellitus. PPARgamma signaling could also play an anti-neoplastic role in several in vitro models, although conflicting(More)